Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Grain boundary character distributions in Si3N4 ceramics

Zhao Ming-Liang Chen Song Sun Feng Zhang Jing Lin Yan Zhang Wei-Ru Wang Wei-Guo

Citation:

Grain boundary character distributions in Si3N4 ceramics

Zhao Ming-Liang, Chen Song, Sun Feng, Zhang Jing, Lin Yan, Zhang Wei-Ru, Wang Wei-Guo
PDF
HTML
Get Citation
  • The structure of grain boundary has an essential influence on the physical and mechanical properties, especially the high-temperature mechanical properties of silicon nitride ceramics. In the present work, the five-parameter analysis method which is established based on electron backscatter diffraction (EBSD), and stereology and statistics are used to study the grain boundary character distributions in the two commercial silicon nitride ceramic ball samples. These two samples are both fabricated by hot isostatic pressing but made in China and abroad, respectively. The results indicate that the misorientation distributions of the two samples radically deviate from the random distribution at a rotation angle of 180°, showing that the frequency of the relevant grain boundaries is dramatically higher than that of the randomly distributed ones. These grain boundaries are mainly those possessing the misorientations of [0 1 –1 0]/180° and [–1 2 –1 0]/180°, corresponding to Σ2 and Σ3 boundaries, respectively. The grain boundary inter-connections (GBICs) of the Σ2 boundaries are basically the same in the two samples, and they are dominated mainly by the {0 0 0 1}/{0 0 0 1} basal-to-basal inter-connection. However, the GBICs of Σ3 boundaries are quite different in the two samples. they primarily the {–1 2 –1 0}/{–1 2 –1 0} prismatic-to-prismatic inter-connection for the Σ3 boundaries in the sample made in China, but it is mainly the {1 0 –1 0}/{1 0 –1 0} prismatic-to-prismatic inter-connection for the Σ3 boundary in the sample made abroad. Crystallographic analysis shows that the planar coincidence site density (PCSD) for the {–1 2 –1 0}/{–1 2 –1 0}, {0 0 0 1}/{0 0 0 1} and {1 0 –1 0}/{1 0 –1 0} GBIC are 2.45 /nm2, 7.95 /nm2 and 9.10 /nm2, respectively, implying that the degree of the structural ordering increases in turn. Further discussion emphasizes that the grain boundaries possessing {1 0 –1 0}/{1 0 –1 0} GBIC and {0 0 0 1}/{0 0 0 1} GBIC should be one type of special boundaries due to their high degrees of structural ordering.
      Corresponding author: Chen Song, gxchensong@126.com ; Wang Wei-Guo, wang.wei.guo@163.com
    • Funds: Project supported by the Special Projects of the Central Government to Guide the Corresponding Local Science and Technology Development, China (Grant No. 2019L3010)
    [1]

    Krstic Z, Krstic V D 2012 J. Mater. Sci. 47 535

    [2]

    Zhang Y, Yu X, Gu H, Yao D X, Zuo K H, Xia Y F, Yin J W, Liang H Q, Zeng Y P 2020 Ceram. Int. 47 5656

    [3]

    Santos C, Ribeiro S, Strecker K, Rodrigues J D, Silvaet C R M 2007 J. Mater. Process. Technol. 184 108Google Scholar

    [4]

    Guo G F, Li J B, Yang X Z, Lin H, Liang L, He M S, Tong X G, Yang J 2007 Acta Mater. 54 2311

    [5]

    Blugan G, Wittig D, Kuebler J 2009 Corros. Sci. 51 547Google Scholar

    [6]

    Fox K M, Hellmann J R 2010 Int. J. Appl. Ceram. Technol. 5 138

    [7]

    Vieillard C 2016 Int. J. Fatigue 96 283

    [8]

    Schilm J, Herrmann M, Michael G 2003 J. Eur. Ceram. Soc. 23 577Google Scholar

    [9]

    Tian X H, Zhao J, Wang Y T, Gong F, Qin W Z, Pan H L 2015 Ceram. Int. 43 3381

    [10]

    Guo S Q, Hirosaki N, Nishimura T, Yamamoto Y, Mitomo M 2010 J. Am. Ceram. Soc. 86 1900

    [11]

    Lu H H, Huang J L 2001 Ceram. Int. 27 621Google Scholar

    [12]

    Ahmad S, Ludwig T, Herrmann M, Mahmoud M M, Lippmann W, Seifert H J 2015 J. Eur. Ceram. Soc. 35 2261Google Scholar

    [13]

    Kmra B, Bps A 2019 J. Alloy. Compd. 779 590Google Scholar

    [14]

    Basu B, Vleugels J, Kalin M, Biest O V D 2003 Mater. Sci. Eng., A 359 228Google Scholar

    [15]

    Guan X J, Shi F, Ji H M, Li X W 2019 Mater. Sci. Eng., A 765 138299Google Scholar

    [16]

    Wang H, Guo K, Liu X Q, Hong C F, Wang W G, Dai P Q 2019 Mater. Charact. 149 105Google Scholar

    [17]

    Tokita S, Kokawa H, Kodama S, Sato Y S, Sano Y, Li Z G, Feng K, Wu Y X 2020 Mater. Today Commun. 25 101572Google Scholar

    [18]

    Wang W G, Fang X Y 2008 Mater. Sci. Eng., A 491 199Google Scholar

    [19]

    Kim C S, Hu Y, Rohrer G S, Randle V 2005 Scr. Mater. 52 633Google Scholar

    [20]

    Flávia D C G, Luiz M B D A, Cilene L, Leonardo S A, Jean D, Luiz H D A 2020 J. Mater. Res. Technol. 9 1801Google Scholar

    [21]

    Lai Y F, Zhao S L, Luo T T, Xu Q F, Liu C Y, Liu K, Li Q Z, Yang M J, Zhang S, Han M X, Goto T, Tu R 2020 Ceram. Int. 46 27000Google Scholar

    [22]

    Beladi H, Ghaderi A, Rohrer G S 2019 Philos. Mag. 100 1

    [23]

    Wang W G, Cai C H, Rohrer G S, Gu X F, Lin Y, Chen S, Dai P Q 2018 Mater. Charact. 144 411Google Scholar

    [24]

    Lu X F, Gao X, Ren J Q, Li C X, Guo X, Yan X B, La P Q 2018 Comput. Mater. Sci. 151 296Google Scholar

    [25]

    Qiu J J, Zhang M, Liu X Y, Zhang X X, Tan Z L 2020 Mater. Sci. Eng., A 797 139985Google Scholar

    [26]

    Rohrer G S, El Dasher B S, Miller H M, Rollett A D, Saylor D M 2004 Mater. Res. Soc. Symp. Proc. 819 265

    [27]

    Wang W G, Chen S, Rohrer G S, Chen W Z 2017 Scr. Mater. 128 18Google Scholar

    [28]

    Wang W G, Cui Y K, Rohrer G S, Cai C H, Chen S, Gu X F, Lin Y 2019 Scr. Mater. 170 62Google Scholar

    [29]

    Jeyaraam R, Vedantam S, Sarma V S 2019 Mater. Charact. 152 276Google Scholar

    [30]

    Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X 2010 Mater. Sci. Eng., A 527 1571Google Scholar

    [31]

    Pellan M, Lay S, Missiaen J M, Norgren S, Angseryd J, Coronel E, Persson T 2017 Powder Metall. 60 208Google Scholar

    [32]

    Li B, Li G Q, Chen J H, Chen H Y, Xing X M, Hou X M, Li Y 2018 Ceram. Int. 44 9395Google Scholar

  • 图 1  电子背散射衍射(EBSD)全欧拉角去噪前(a)和(b)及去噪后(c)和(d)显微组织 (a), (c)样品E; (b), (d) 样品F

    Figure 1.  All Euler microstructures before (a) and (b) and after (c) and (d) noise reduction, obtained by electron backscatter diffraction (EBSD): (a), (c) Sample E; (b), (d) sample F.

    图 2  经50 ℃氢氟酸(HF)浸泡240 min后样品E(a)和F(b)的二次电子显微组织(SEM)

    Figure 2.  The secondary electron microscopy (SEM) of sample E (a) and F (b) after soaking in hydrofluoric acid at 50 ℃ for 240 min.

    图 3  取向成像显微图(a)和(b)及Si3N4/ Si3N4晶界网络(c)和(d) (a), (c) 样品E; (b)和(d) 样品F

    Figure 3.  Orientation imaging microscopy (OIM) (a) and (b), and Si3N4/Si3N4 grain boundary networks (c) and (d): (a), (c) Sample E; (b), (d) sample F.

    图 4  φ2 = 40°截面的取向分布函数图 (a) 样品E; (b) 样品F

    Figure 4.  φ2 = 40° section of orientation distribution function (ODF): (a) Sample E; (b) sample F.

    图 5  Si3N4/Si3N4晶界取向差分布图 (a) 样品E; (b) 样品F

    Figure 5.  Misorientation distributions of Si3N4/Si3N4 grain boundaries of sample E (a) and F (b).

    图 6  Si3N4/ Si3N4晶界随旋转轴分布 (a) 样品E; (b) 样品F

    Figure 6.  The frequencies of the gain boundaries with varied rotation axis in sample E (a) and F(b).

    图 7  以[0 1 –1 0]((a)和(c))及[–1 2 –1 0] ((b)和(d))为旋转轴的Si3N4/Si3N4晶界取向差分布 (a), (b) 样品E; (c), (d) 样品F

    Figure 7.  Misorientation distributions of Si3N4/Si3N4 grain boundaries possessing rotation axis [0 1 –1 0] (a) and (c) and [–1 2 –1 0] (b) and (d): (a), (b) Sample E; (c), (d) sample F.

    图 8  两Si3N4晶粒呈[0 1 –1 0]/180°(Σ2)取向差关系对应的重合原子示意图 (a) 2个等价N1原子重合图; (b) 6个等价N2原子重合图; (c) 6个等价Si原子重合图. 其中蓝色圆圈和红色圆圈分别代表旋转前后的原子, 绿色圆点代表重合原子. 每个示意图均包含为50个Si3N4晶胞

    Figure 8.  Schematic illustrations for the coincident atoms when two Si3N4 crystals have a misorientation of [0 1 –1 0]/180°(Σ2): (a) Two identical N1 atoms; (b) 6 identical N2 atoms; (c) 6 identical Si atoms. Blue and red circles stand for the atoms before and after rotation, respectively. Green dots represent the coincident atoms. Each plot contains 50 unit cells of Si3N4.

    图 9  两Si3N4晶粒呈[–1 2 –1 0]/180°(Σ3)取向差关系对应的重合原子示意图 (a) 2个等价N1原子重合图; (b) 6个等价N2原子重合图; (c) 6个等价Si原子重合图. 其中蓝色圆圈和红色圆圈分别代表旋转前后的原子, 绿色圆点代表重合原子. 每个示意图均包含为50个Si3N4晶胞

    Figure 9.  Schematic illustrations for the coincident atoms when two Si3N4 crystals have a misorientation of [–1 2 –1 0]/180°(Σ3): (a) Two identical N1 atoms; (b) 6 identical N2 atoms; (c) 6 identical Si atoms. Blue and red circles stand for the atoms before and after rotation, respectively. Green dots represent the coincident atoms. Each plot contains 50 unit cells of Si3N4.

    图 10  样品E((a)和(c))和F((b)和(d))[0 1 –1 0]/180°((a)和(b))以及[–1 2 –1 0]/180°((c)和(d))晶界的晶界面分布FPA图(投影在(0 0 0 1)内) (a)和(b)中的, 为分布强点等同位置; (c)和(d)中的 分别为分布强点和次强点等同位置

    Figure 10.  (0 0 0 1) projections of grain boundary plane distributions of [0 1 –1 0]/180°((a) and (b))and [–1 2 –1 0]/180°((c) and (d)) grain boundaries in sample E ((a) and (c)) and sample F ((b) and(d)). , and in Figure (a) and (b) stand for the identical positions of the strongest distribution, while and in Figure (c) and (d) represent the identical positions of the strongest and the second strongest distribution, respectively.

    图 11  样品E((a)和(b))和F((c)和(d))各自的Si3N4/ Si3N4全部晶界的晶界面分布FPA图((a)和(c))及其分布强点和次强点位置示意图((b)和(d))(投影在(0 0 0 1)内). , 为分布最强点等同位置, 为分布次强点等同位置

    Figure 11.  (0 0 0 1) projections of grain boundary plane distributions of all grain boundaries insample E ((a) and (b)) and F ((c) and (d)). and stand for the identical positions of the strongest distributions, while represents the identical positions of the second strongest distribution.

    图 12  对应于图10的样品E((a)和(c))和F((b)和(d))[0 1 –1 0]/180°((a)和(b))以及[–1 2 –1 0]/180°((c)和(d))晶界的晶界面分布示意图(投影在(0 0 0 1)内)

    Figure 12.  Schematic illustrations of grain boundary plane distributions of [0 1 –1 0]/180° ((a) and (b)) and [–1 2 –1 0]/180° ((c) and (d)) grain boundaries in sample E ((a) and (c)) and F ((b) and (d)).

    表 1  样品E和F中[0 1 –1 0]/180°和[–1 2 –1 0]/180°晶界的GBIC及对应的PCSD值

    Table 1.  The GBICs and PCSD values of [0 1 –1 0]/180° and [–1 2 –1 0]/180° grain boundaries observed in sample E and F

    Sample ESample F
    Misorientation
    (u v t w/θ)
    GBICsPCSD
    /(/nm2)
    Misorientation
    (u v t w/θ)
    GBICsPCSD
    /(/nm2)
    [0 1 –1 0]/180°{–2 2 0 1}/{–2 2 0 1}1.49[0 1 –1 0]/180°{–2 1 1 2}/{–2 1 1 2}3.5
    (Σ2){–2 1 1 2}/{–2 1 1 2}3.5(Σ2){0 0 0 1}/{0 0 0 1}7.95
    {0 0 0 1}/{0 0 0 1}7.95
    [–1 2 –1 0]/180°{–5 3 2 1}/{2 3 –5 –1}0.93[–1 2 –1 0]/180°{–8 1 7 1}/{7 1 –8 –1}1.63
    (Σ3){–1 2 –1 0}/{–1 2 –1 0}2.45(Σ3){1 0 –1 0}/{1 0 –1 0}9.1
    DownLoad: CSV
  • [1]

    Krstic Z, Krstic V D 2012 J. Mater. Sci. 47 535

    [2]

    Zhang Y, Yu X, Gu H, Yao D X, Zuo K H, Xia Y F, Yin J W, Liang H Q, Zeng Y P 2020 Ceram. Int. 47 5656

    [3]

    Santos C, Ribeiro S, Strecker K, Rodrigues J D, Silvaet C R M 2007 J. Mater. Process. Technol. 184 108Google Scholar

    [4]

    Guo G F, Li J B, Yang X Z, Lin H, Liang L, He M S, Tong X G, Yang J 2007 Acta Mater. 54 2311

    [5]

    Blugan G, Wittig D, Kuebler J 2009 Corros. Sci. 51 547Google Scholar

    [6]

    Fox K M, Hellmann J R 2010 Int. J. Appl. Ceram. Technol. 5 138

    [7]

    Vieillard C 2016 Int. J. Fatigue 96 283

    [8]

    Schilm J, Herrmann M, Michael G 2003 J. Eur. Ceram. Soc. 23 577Google Scholar

    [9]

    Tian X H, Zhao J, Wang Y T, Gong F, Qin W Z, Pan H L 2015 Ceram. Int. 43 3381

    [10]

    Guo S Q, Hirosaki N, Nishimura T, Yamamoto Y, Mitomo M 2010 J. Am. Ceram. Soc. 86 1900

    [11]

    Lu H H, Huang J L 2001 Ceram. Int. 27 621Google Scholar

    [12]

    Ahmad S, Ludwig T, Herrmann M, Mahmoud M M, Lippmann W, Seifert H J 2015 J. Eur. Ceram. Soc. 35 2261Google Scholar

    [13]

    Kmra B, Bps A 2019 J. Alloy. Compd. 779 590Google Scholar

    [14]

    Basu B, Vleugels J, Kalin M, Biest O V D 2003 Mater. Sci. Eng., A 359 228Google Scholar

    [15]

    Guan X J, Shi F, Ji H M, Li X W 2019 Mater. Sci. Eng., A 765 138299Google Scholar

    [16]

    Wang H, Guo K, Liu X Q, Hong C F, Wang W G, Dai P Q 2019 Mater. Charact. 149 105Google Scholar

    [17]

    Tokita S, Kokawa H, Kodama S, Sato Y S, Sano Y, Li Z G, Feng K, Wu Y X 2020 Mater. Today Commun. 25 101572Google Scholar

    [18]

    Wang W G, Fang X Y 2008 Mater. Sci. Eng., A 491 199Google Scholar

    [19]

    Kim C S, Hu Y, Rohrer G S, Randle V 2005 Scr. Mater. 52 633Google Scholar

    [20]

    Flávia D C G, Luiz M B D A, Cilene L, Leonardo S A, Jean D, Luiz H D A 2020 J. Mater. Res. Technol. 9 1801Google Scholar

    [21]

    Lai Y F, Zhao S L, Luo T T, Xu Q F, Liu C Y, Liu K, Li Q Z, Yang M J, Zhang S, Han M X, Goto T, Tu R 2020 Ceram. Int. 46 27000Google Scholar

    [22]

    Beladi H, Ghaderi A, Rohrer G S 2019 Philos. Mag. 100 1

    [23]

    Wang W G, Cai C H, Rohrer G S, Gu X F, Lin Y, Chen S, Dai P Q 2018 Mater. Charact. 144 411Google Scholar

    [24]

    Lu X F, Gao X, Ren J Q, Li C X, Guo X, Yan X B, La P Q 2018 Comput. Mater. Sci. 151 296Google Scholar

    [25]

    Qiu J J, Zhang M, Liu X Y, Zhang X X, Tan Z L 2020 Mater. Sci. Eng., A 797 139985Google Scholar

    [26]

    Rohrer G S, El Dasher B S, Miller H M, Rollett A D, Saylor D M 2004 Mater. Res. Soc. Symp. Proc. 819 265

    [27]

    Wang W G, Chen S, Rohrer G S, Chen W Z 2017 Scr. Mater. 128 18Google Scholar

    [28]

    Wang W G, Cui Y K, Rohrer G S, Cai C H, Chen S, Gu X F, Lin Y 2019 Scr. Mater. 170 62Google Scholar

    [29]

    Jeyaraam R, Vedantam S, Sarma V S 2019 Mater. Charact. 152 276Google Scholar

    [30]

    Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X 2010 Mater. Sci. Eng., A 527 1571Google Scholar

    [31]

    Pellan M, Lay S, Missiaen J M, Norgren S, Angseryd J, Coronel E, Persson T 2017 Powder Metall. 60 208Google Scholar

    [32]

    Li B, Li G Q, Chen J H, Chen H Y, Xing X M, Hou X M, Li Y 2018 Ceram. Int. 44 9395Google Scholar

  • [1] Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong. Low-density plasmas generated by electron beams passing through silicon nitride window. Acta Physica Sinica, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [2] Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai. Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals. Acta Physica Sinica, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] Yang Zhao-Xi, Liu Wen-Bo, Zhang Cong-Yu, He Xin-Fu, Sun Zheng-Yang, Jia Li-Xia, Shi Tian-Tian, Yun Di. Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys. Acta Physica Sinica, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [4] Zhang Jun, Chen Wen-Xiong, Zheng Cheng-Wu, Li Dian-Zhong. Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects. Acta Physica Sinica, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [5] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [6] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [7] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Grainboundary electronic structure of ZnO-Bi2O3 based varistor ceramics. Acta Physica Sinica, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [8] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Zhang Hai-Long, Zhao Li-Dong. Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey. Acta Physica Sinica, 2008, 57(6): 3791-3797. doi: 10.7498/aps.57.3791
    [9] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [10] Wang Jun-Zhong, Ji Yuan, Wang Xiao-Dong, Liu Zhi-Min, Luo Jun-Feng, Li Zhi-Guo. Microstructures of Al and Cu interconnects. Acta Physica Sinica, 2007, 56(1): 371-375. doi: 10.7498/aps.56.371
    [11] Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles computational tensile test on an Al grain boundary. Acta Physica Sinica, 2006, 55(6): 2901-2907. doi: 10.7498/aps.55.2901
    [12] ZHANG GUO-YING, LIU GUI-LI, ZENG MEI-GUANG, QIAN CUN-FU. ENERGIES OF IMPURITIES AND DOPING EFFECT AT 5.3° LOW ANGLE GRAIN BOUNDARIES IN STEEL. Acta Physica Sinica, 2000, 49(7): 1344-1347. doi: 10.7498/aps.49.1344
    [13] CHEN JUN-FANG, WANG WEI-XIANG, LIU SONG-HAO, REN ZHAO-XING. MICROSTRUCTURE OF SILICON NITRIDE THIN FILM. Acta Physica Sinica, 1998, 47(9): 1529-1535. doi: 10.7498/aps.47.1529
    [14] ZHENG YONG-MEI, CHEN YU, MIAO RONG-ZHI. ON THE CONTINUOUS TRANSITION FROM PTC EFFECT TO GBBL CAPACITOR FOR BaTiO3 SEMICONDUCTING CERAMICS——APPLICATION OF THE GRAIN BOUNDARY BARRIER MODEL. Acta Physica Sinica, 1996, 45(9): 1543-1550. doi: 10.7498/aps.45.1543
    [15] JIANG WEI-LIN, WANG RUI-LAN, ZHU FBI-RAN, WANG CHANG-AN, XU TIAN-BING, LI HONG-CHENG, ZHAI YONG-LIANG, REN MENG-MEI, ZHOU JUN-SI. RBS STUDY ON YBCO AMORPHOUS FILMS PREPARED BY D. C. MAGNETRON SPUTTERING. Acta Physica Sinica, 1994, 43(4): 660-666. doi: 10.7498/aps.43.660
    [16] CHEN ZHI-XIONG, HUANG ZHUO-HE, HE AI-QIN, SHI BIN. GRAIN BOUNDARY PHASES AND ANTI-DEGRADATION PROPERTIES OF ZnO-Bi2O3-Sb2O3-BaO CERAMICS. Acta Physica Sinica, 1994, 43(6): 1035-1040. doi: 10.7498/aps.43.1035
    [17] DUAN YU-HUA, GE TING-SUI, ZHANG TIAN-YI. TRANSFORMATION TEMPERATURE OF GRAIN BOUNDARY RELAXATION IN ALUMINIUM BICRYSTALS. Acta Physica Sinica, 1993, 42(2): 297-303. doi: 10.7498/aps.42.297
    [18] CAI SHU-ZHI, MU JI-MEI, ZHANG LI-DE, CHENG BEN-PEI. A STUDY ON BOND STRUCTURE OF NANOMETER-SIZED AMORPHOUS SILICON NITRIDE SOLIDS IN TERMS OF X-RAY RADIAL DISTRIBUTION FUNCTIONS. Acta Physica Sinica, 1992, 41(10): 1620-1626. doi: 10.7498/aps.41.1620
    [19] LI ZONG-QUAN, ZHANG LI-DE, HE YI-ZHEN. LOW ANGLE GRAIN BOUNDARIES IN HCP METAL α-Ti. Acta Physica Sinica, 1985, 34(8): 1064-1067. doi: 10.7498/aps.34.1064
    [20] . Acta Physica Sinica, 1964, 20(2): 191-192. doi: 10.7498/aps.20.191
Metrics
  • Abstract views:  6173
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2021
  • Accepted Date:  30 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回