Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of rapid compression-induced melt crystallization in selenium

Wang Lu Wang Ju Li Na-Na Liang Ce Wang Wen-Dan He Zhu Liu Xiu-Ru

Citation:

Mechanism of rapid compression-induced melt crystallization in selenium

Wang Lu, Wang Ju, Li Na-Na, Liang Ce, Wang Wen-Dan, He Zhu, Liu Xiu-Ru
PDF
HTML
Get Citation
  • Amorphous selenium (Se) can be easily prepared by quenching the melt, which indicates that the Se possesses the good glass-forming ability. However, crystallization occurs after rapidly compressing the melt within about 20 ms. In this work, we investigate the mechanism of rapid compression-induced crystallization from Se melt. Compressing Se melt experiments are carried out at the following temperatures: 513, 523 and 533 K. The melt is rapidly compressed under 2.4 GPa for about 20 ms. Different holding times, i.e. 0, 30, 60 min after solidification are adopted. The samples are quenched to room temperature and then unloaded to ambient pressure. The X-ray diffraction analysis of the recovered sample indicates that the crystallization product is the t-Se. It is found that with the prolongation of holding time, the grain size increases due to the continuous aggregation growth of crystal grains. By comparing with the isothermal crystallization products of amorphous Se and ultrafine Se powder, it is suggested that the rapid compression-induced solidification product should be t-Se crystalline. The speculation that the solidification product is amorphous Se and it crystallizes in the cooling process does not hold true. The amorphous Se cannot be prepared through the rapid compression process on a millisecond scale. It is related to the thermal stability of amorphous Se under high pressure. It is reported that the dependence of crystallization temperature Tx on pressure i.e. dTx/dP for amorphous Se is about 40–50 K/GPa in a range of 0.1 MPa–1 GPa. However, the Tx of amorphous Se is almost constant in a range of 2–6 GPa. It means that the thermal stability of amorphous Se against crystallization does not increase with increasing pressure after 2 GPa. In this work, the temperature of 513–533 K in the experiments is higher than the Tx of amorphous Se. Therefore, the t-Se crystal is the stable phase and amorphous Se is unstable. The Se melt tends to crystallize in the supercooled liquid state after rapid compression. It is interesting to investigate the mechanism of dTx/dP curve discontinuous change at around 2 GPa in the future. Both the Se melt after rapid compression and the amorphous Se before crystallization are in supercooled liquid state. We speculate that high pressure may result in the microstructure transition in supercooled liquid state Se.
      Corresponding author: Liu Xiu-Ru, xrliu@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10774123) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682018ZT29)
    [1]

    Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar

    [2]

    Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar

    [3]

    Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar

    [4]

    邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar

    Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar

    [5]

    Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar

    [6]

    Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar

    [7]

    Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar

    [8]

    Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar

    [9]

    Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007

    [10]

    Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar

    [11]

    Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar

    [12]

    Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar

    [13]

    Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar

    [14]

    Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar

    [15]

    Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar

    [16]

    Bridgman P W 1941 Phys. Rev. 60 351Google Scholar

    [17]

    McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar

    [18]

    Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar

    [19]

    He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar

    [20]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [21]

    刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压物理学报 28 385Google Scholar

    Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar

    [22]

    Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar

    [23]

    He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar

    [24]

    Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar

    [25]

    Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar

    [26]

    Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar

  • 图 1  活塞-圆筒式高压模具及样品组装方式示意图

    Figure 1.  Sample assembly in the piston-cylinder mode.

    图 2  (a)快速压致凝固实验的路径示意图; (b)等温结晶实验的路径示意图; 图中数字表示实验步骤的顺序

    Figure 2.  (a) A schematic diagram of rapid compression solidification process; (b) a schematic diagram of isothermal crystallization process. The number represents the order of the experimental steps.

    图 3  不同温度下快速压致凝固样品的XRD图谱(给出了初始微米粉末样品的XRD图谱作为对比) (a) 513 K; (b) 523 K; (c) 533 K

    Figure 3.  XRD patterns of Se samples, which are rapidly solidified from melt at different temperatures of (a) 513 K; (b) 523 K; (c) 533 K. As comparison, the XRD pattern of μm scale Se powder is also displayed.

    图 4  不同温度下快速压致凝固样品的SEM图谱

    Figure 4.  SEM pictures of Se samples, which are rapidly solidified from melt at different temperatures.

    图 5  (a) 非晶硒样品的XRD图谱, 包括常压制备的非晶硒XRD图谱、非晶硒常温快压后回收样品的XRD图谱; (b)在513, 523, 533 K温度下非晶硒等温结晶样品的XRD图谱

    Figure 5.  (a) XRD patterns of amorphous selenium (a-Se) sample and the compressed a-Se which is recovered after rapidly compressed at room temperature; (b) XRD patterns of Sample I, Sample II, Sample III, which are the isothermal crystallization products of a-Se at 513, 523, and 533 K, respectively.

    图 6  在513, 523, 533 K温度下非晶硒等温结晶样品的SEM图谱

    Figure 6.  SEM pictures of Sample I, Sample II, Sample III. The temperatures of 513, 523, and 533 K are the isothermal crystallization temperatures of a-Se.

    图 7  在513, 523, 533 K温度下超细硒粉等温结晶样品的XRD图谱

    Figure 7.  XRD patterns of Sample 1, Sample 2, Sample 3, which are the isothermal crystallization products of ultrafine Se powder at 513, 523, and 533 K, respectively.

    图 8  (a)超细硒微粉的SEM图; (b)不同温度下超细硒粉等温结晶Sample 1, Sample 2, Sample 3的SEM图

    Figure 8.  (a) SEM picture of ultrafine Se powder; (b) SEM pictures of Sample 1, Sample 2, Sample 3. The temperatures of 513 K, 523 K and 533 K are the isothermal crystallization temperatures of ultrafine Se powder.

    图 9  Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III衍射谱的精修结果, 图中黑色点表示衍射实验数据, 红色曲线为计算的衍射峰, 蓝色曲线为实验数据与计算数据的偏差, 紫色的短线表示t-Se相衍射峰的位置

    Figure 9.  XRD patterns of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III. Symbols: experimental data (black dots), calculated diffraction pattern (red line), residuals of the refinement (blue solid line), and peak positions of t-Se (purple vertical bar).

    图 10  非晶硒的晶化起始温度Tx和晶化产物t-Se的熔化温度Tm随压力的变化关系, 其中, Ye和Lu[24]的数据测量实验的升温速率为8.7 K/min, He等[23]的数据测量实验的升温速率为8.6 K/min, 内插图清楚地显示了400—560 K温度范围内的关系曲线

    Figure 10.  Onset crystallization temperature (Tx) of a-Se and the melting temperature (Tm) of a-Se crystallization product i.e. t-Se as a function of the applied pressure. Data from Ye and Lu[24] was measured under the heating rate of 8.7 K/min. Data from He et al.[23] was measured under the heating rate of 8.6 K/min. The pressure and temperature conditions in this work are shown. The inset figure displays clearly the data in the range of 400–560 K.

    图 11  微米粉末样品、Sample 2、Sample B2、Sample II的拉曼光谱图

    Figure 11.  Raman spectra of μm scale Se powder, Sample 2, Sample B2, Sample II.

    表 1  Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III的XRD谱中部分衍射晶面的信息, 包括衍射峰的相对强度I、晶面间距d、半峰宽FWHM

    Table 1.  Diffraction peaks parameters of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III, including the relative peak intensity (I), interplanar distance (d) and peak width at half-height (FWHM).

    (100) (101) (110) (012) (111)
    I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)
    μm powder43.73.7950.4461003.0130.353 13.92.1870.593 30.42.0740.453 19.22.0020.592
    Sample A125.33.7930.3161003.0100.1878.62.1860.47415.32.0770.29213.42.0010.395
    Sample B124.83.7790.2511003.0040.1667.72.1820.30124.62.0720.2159.51.9970.323
    Sample C134.73.7850.2311003.0100.18210.52.1840.29238.52.0750.24313.51.9990.323
    Sample I39.53.7850.2901003.0100.21811.62.1850.44720.72.0770.34914.12.0000.435
    Sample II51.73.7890.3241003.0070.23810.42.1850.52119.72.0770.34912.21.9990.489
    Sample III33.23.7890.3261003.0070.24410.02.1830.50024.42.0780.37613.32.0000.487
    DownLoad: CSV
  • [1]

    Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar

    [2]

    Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar

    [3]

    Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar

    [4]

    邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar

    Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar

    [5]

    Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar

    [6]

    Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar

    [7]

    Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar

    [8]

    Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar

    [9]

    Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007

    [10]

    Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar

    [11]

    Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar

    [12]

    Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar

    [13]

    Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar

    [14]

    Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar

    [15]

    Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar

    [16]

    Bridgman P W 1941 Phys. Rev. 60 351Google Scholar

    [17]

    McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar

    [18]

    Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar

    [19]

    He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar

    [20]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [21]

    刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压物理学报 28 385Google Scholar

    Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar

    [22]

    Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar

    [23]

    He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar

    [24]

    Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar

    [25]

    Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar

    [26]

    Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar

  • [1] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] Wang Zhi-Fei, Wang Lu, Wang Ju, Liu Xiu-Ru. Pressure-induced rapid solidification of polyphenylene sulfide melt. Acta Physica Sinica, 2020, 69(9): 096101. doi: 10.7498/aps.69.20191820
    [3] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [4] Bei Bang-Kun, Wang Hua-Guang, Zhang Ze-Xin. Two-dimensional crystallization in finite-sized colloidal systems. Acta Physica Sinica, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [5] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [6] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [7] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] Wang Li-Lin, Wang Zhi-Jun, Lin Xin, Wang Jin-Cheng, Huang Wei-Dong. Effect of cooling rate on crystallization process of thermo-sensitive poly-N-isopropylacrylamide colloid. Acta Physica Sinica, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [9] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [10] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [11] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [12] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] Pan Shu-Wan, Qi Dong-Feng, Chen Song-Yan, Li Cheng, Huang Wei, Lai Hong-Kai. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Physica Sinica, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [14] Wu Bao-Jia, Han Yong-Hao, Peng Gang, Liu Cai-Long, Wang Yue, Gao Chun-Xiao. Research of in-situ electrical property of micron dimension ZnO under high pressure. Acta Physica Sinica, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [15] Ma Li, Gao Yong. Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta Physica Sinica, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [16] Ye Xiang-Xi, Ming Chen, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the ability for bulk materials to form single crystals. Acta Physica Sinica, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [17] Ding Ying-Chun, Xu Ming, Pan Hong-Zhe, Shen Yi-Bin, Zhu Wen-Jun, He Hong-Liang. Electronic structure and physical properties of γ-Si3N4 under high pressure. Acta Physica Sinica, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [18] Yang Jiong, Zhang Wen-Qing. Structural stability of Se and Te nanowires. Acta Physica Sinica, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [19] Shao Guang-Jie, Qin Xiu-Juan, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu. Grain fragmentation and property modification of nanocrystalline ZnO under high pressure. Acta Physica Sinica, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] Wang Hai-Yan, Liu Ri-Ping, Ma Ming-Zhen, Gao Ming, Yao Yu-Shu, Wang Wen-Kui. Solidification of FeSi2 alloy under high pressure. Acta Physica Sinica, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
Metrics
  • Abstract views:  5530
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2021
  • Accepted Date:  17 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回