Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of exciton-exciton annihilation dynamics in the approximation of weak coupling

Fan Xu-Yang Chen Han-Chao Wang Lu-Xia

Citation:

Theoretical study of exciton-exciton annihilation dynamics in the approximation of weak coupling

Fan Xu-Yang, Chen Han-Chao, Wang Lu-Xia
PDF
HTML
Get Citation
  • Dynamics of exciton-exciton annihilation (EEA) in molecular aggregates is closely related to its luminescence characteristics and energy transfer. It is meaningful to uncover energy and charge transfer process in molecular systems. Therefore, studying the dynamics of exciton is important for simulating photosynthesis in nature and analyzing the transport process of photocarriers. In this paper the weak coupling approximation is adopted to obtain the rate equation in the framework of density matrix theory. The relation among the intermolecular distance, exciton state density, excited state dipole moment and exciton-exciton annihilation dynamics is studied by the rate equations. It is found that the decrease of intermolecular distance leads the generation rate of higher-order excited states to increase, resulting in the obvious S-shaped decay characteristics. Moreover, the dipole moment of the higher-order excited state is the key factor of the exciton fusion process, and the greater the exciton density, the more easily the exciton fusion process occurs. Therefore, the reduction of intermolecular distance and the increase of the dipole moment of the higher-order excited state make the nearest neighbor molecules have a strong coupling, resulting in a high generation rate of the higher-order excited state. It is found that the evolution processes of the first excited state in different exciton densities are consistent with the experimental results of the excitation of OPPV7 monomer (PPV oligomers of 7) at a low excitation energy, and the excitation of OPPV7 aggregates at different excitation energy levels. It can be observed that the exciton decay rate is faster under the excitation of the strong external field. Using the quantum wave packet under optical excitation as the initial state, the excited state dynamics is simulated at different exciton energy levels. It is found that the exciton state can maintain good locality within a few hundreds of femtoseconds, which shows that the exciton state is a coherent superposition state, and its local characteristics are related to the excitation energy level. These conclusions are applicable to the aggregations whose single molecule has an energy level of ${E_{mf}} \approx 2{E_{me}}$, and also provide a reasonable reference for the exciton-exciton annihilation process under optical excitation.
      Corresponding author: Wang Lu-Xia, luxiawang@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961132023, 11774026)
    [1]

    Cook S, Liyuan H, Furube A, Katoh R 2010 J. Phys. Chem. C 114 10962Google Scholar

    [2]

    Peckus D, Devizis A, Hertel D, Meerholz K, Gulbinas V 2012 Chem. Phys. 404 42Google Scholar

    [3]

    Ginas S, Kirkpatrick J, Howard I A, Johnson K, Wilson M W B, Friend R H, Silva C 2013 J. Phys. Chem. B 117 4649Google Scholar

    [4]

    Dai D C, Monkman A P 2013 Phys. Rev. B 87 045308Google Scholar

    [5]

    Völker S F, Schmiedel A, Holzapfel M, Renziehausen K, Engel V, Lambert C 2014 J. Phys. Chem. C 111 17467

    [6]

    Fennel F, Lochbrunner S 2015 Phys. Rev. B 92 140301Google Scholar

    [7]

    Engel E, Leo K, Hoffmann M 2006 Chem. Phys. 325 170Google Scholar

    [8]

    Linardy E, Yadav D, Vella D, Verzhbitskiy I A, Watanabe K, Taniguchi T, Pauly F, Trushin M 2020 Nano Lett. 20 1647Google Scholar

    [9]

    Kühn O, Renger T, May V, Voigt J, Pullerits T, Sundström V 1997 Trends in Photochem. Photobiol. 4 213

    [10]

    Hader K, May V, Lambert, Engel V 2016 Phys. Chem. Chem. Phys. 18 13368Google Scholar

    [11]

    Peteanu L A, Chowdhury S, Wildeman J, Sfeir M Y 2017 J. Phys. Chem. B 121 1707Google Scholar

    [12]

    Feist J, Garcia-Vidal F J 2015 Phys. Rev. Lett. 114 196402Google Scholar

    [13]

    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015 Phys. Rev. Lett. 114 196403Google Scholar

    [14]

    Xu L, Ji Y, Shi X, Wang L, Gao K 2020 Org. Electron. 85 105886Google Scholar

    [15]

    Spano F C 1992 Phys. Rev. B 46 13017Google Scholar

    [16]

    Juzeliunas G, Knoester J 2000 J. Chem. Phys. 112 2325Google Scholar

    [17]

    Mukamel S, Berman O 2003 J. Chem. Phys. 119 12194Google Scholar

    [18]

    Mukamel S, Abramavicius D 2004 Chem. Rev. 104 2073Google Scholar

    [19]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [20]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [21]

    Tempelaar R, Jansen T L C, Knoester J 2017 J. Phys. Chem. Lett. 8 6113Google Scholar

    [22]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [23]

    茅江奇, 范旭阳, 路彦珍, 王鹿霞 2021 物理学报 70 047302

    Mao J Q, Fan X Y, Lu Y Z, Wang L X 2021 Acta Phys. Sin. 70 047302

  • 图 1  激子-激子湮灭过程的能级示意图

    Figure 1.  Schematic diagram of the energy levels of the exciton-exciton annihilation (EEA) process.

    图 2  不同分子间距离${\varDelta _{m, m \pm 1}}$下的J型分子聚集体的平均第一激发态和高阶激发态占据数动力学过程(${m_{m\left( n \right)}}= $$ 0.8~\rm D$).插图: 前100 fs的J型分子聚集体的平均激发态占据数和时间的线性关系图

    Figure 2.  Population of the average first excited state and higher excited state of the J-type molecular aggregates with the distance between molecules${\varDelta _{m, m \pm 1}}$ (${m_{m\left( n \right)}}= $$ 0.8~\rm D$). Inset: Linear graph of the population of the average first excited state and higher excited state by the J-type molecular aggregates in the first 100 fs versus time.

    图 3  不同高阶激发态偶极矩${m_{m\left( n \right)}}$下的J型分子聚集体的平均第一激发态和高阶激发态占据数动力学过程; 插图: 前100 fs的J型分子聚集体平均激发态占据数和时间的线性关系图

    Figure 3.  Population of the average first excited state and higher excited state of the J-type molecular aggregateswith different dipole moment of higher excited state${m_{m\left( n \right)}}$.Inset: Linear graph of the population of the average first excited state and higher excited state of the J-type molecular aggregates in the first 100 fs versus time.

    图 4  不同激子数下J型分子聚集体的总第一激发态和总高阶激发态占据数动力学过程(${m_{m\left( n \right)}}=0.8~\rm D$); 插图: 前100 fs的J型分子聚集体总第一激发态占据数和总高阶激发态占据数和时间的线性关系图

    Figure 4.  Thepopulation of the total first excited state and higher excited state of the J-type molecular aggregates with different numbers of excitons(${m_{m\left( n \right)}}=0.8~\rm D$). Inset: Linear graph of the population of the total first excited state and higher excited state of the J-type molecular aggregates in the first 100 fs versus time.

    图 5  (a)OPPV7单体和OPPV7(THF: water)聚集体的发射衰减速率[11]; (b)不同激子数下J型分子聚集体激发时的第一激发态湮灭过程(${m_{m\left( n \right)}}=0.1~\rm D$, ${r^{}}{\text{ = 200 p}}{{\text{s}}^{{{ - 1}}}}$)

    Figure 5.  (a) Emission decays of OPPV7 monomer and OPPV7 (THF: water) Aggregates [11]; (b) annihilation process of the first excited state when the J-type molecular aggregates are excited in different excitons(${m_{m\left( n \right)}}=0.1~\rm D$, ${r^{}}{{ = 200~ {\rm{p}}}}{{\text{s}}^{{{ - 1}}}}$).

    图 6  J型分子聚集体哈密顿量对角化的前四个明能级对应的波包分布概率${\left| {{C_m}} \right|^2}$对应率方程的4种初始激发位形 (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级

    Figure 6.  Four initial excitation configurations of the wave packet distribution corresponding (${\left| {{C_m}} \right|^2}$) to the first four bright energy levels corresponding to the diagonalization of the Hamiltonian of the J-type molecular aggregates: (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.

    图 7  J型分子聚集体(10个激子)激发时的第一激发态占据数演变(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm) (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级

    Figure 7.  Population evolution of the first excited state when J-type molecular aggregates are excited (${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm): (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.

    图 8  J型分子聚集体(10个激子)激发时的高阶激发态占据数演变(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm) (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级

    Figure 8.  Population evolution of the higher excited state when J-type molecular aggregates are excited(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm): (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.

  • [1]

    Cook S, Liyuan H, Furube A, Katoh R 2010 J. Phys. Chem. C 114 10962Google Scholar

    [2]

    Peckus D, Devizis A, Hertel D, Meerholz K, Gulbinas V 2012 Chem. Phys. 404 42Google Scholar

    [3]

    Ginas S, Kirkpatrick J, Howard I A, Johnson K, Wilson M W B, Friend R H, Silva C 2013 J. Phys. Chem. B 117 4649Google Scholar

    [4]

    Dai D C, Monkman A P 2013 Phys. Rev. B 87 045308Google Scholar

    [5]

    Völker S F, Schmiedel A, Holzapfel M, Renziehausen K, Engel V, Lambert C 2014 J. Phys. Chem. C 111 17467

    [6]

    Fennel F, Lochbrunner S 2015 Phys. Rev. B 92 140301Google Scholar

    [7]

    Engel E, Leo K, Hoffmann M 2006 Chem. Phys. 325 170Google Scholar

    [8]

    Linardy E, Yadav D, Vella D, Verzhbitskiy I A, Watanabe K, Taniguchi T, Pauly F, Trushin M 2020 Nano Lett. 20 1647Google Scholar

    [9]

    Kühn O, Renger T, May V, Voigt J, Pullerits T, Sundström V 1997 Trends in Photochem. Photobiol. 4 213

    [10]

    Hader K, May V, Lambert, Engel V 2016 Phys. Chem. Chem. Phys. 18 13368Google Scholar

    [11]

    Peteanu L A, Chowdhury S, Wildeman J, Sfeir M Y 2017 J. Phys. Chem. B 121 1707Google Scholar

    [12]

    Feist J, Garcia-Vidal F J 2015 Phys. Rev. Lett. 114 196402Google Scholar

    [13]

    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015 Phys. Rev. Lett. 114 196403Google Scholar

    [14]

    Xu L, Ji Y, Shi X, Wang L, Gao K 2020 Org. Electron. 85 105886Google Scholar

    [15]

    Spano F C 1992 Phys. Rev. B 46 13017Google Scholar

    [16]

    Juzeliunas G, Knoester J 2000 J. Chem. Phys. 112 2325Google Scholar

    [17]

    Mukamel S, Berman O 2003 J. Chem. Phys. 119 12194Google Scholar

    [18]

    Mukamel S, Abramavicius D 2004 Chem. Rev. 104 2073Google Scholar

    [19]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [20]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [21]

    Tempelaar R, Jansen T L C, Knoester J 2017 J. Phys. Chem. Lett. 8 6113Google Scholar

    [22]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [23]

    茅江奇, 范旭阳, 路彦珍, 王鹿霞 2021 物理学报 70 047302

    Mao J Q, Fan X Y, Lu Y Z, Wang L X 2021 Acta Phys. Sin. 70 047302

  • [1] Xu Zhuo, Guo Jing-Yuan, Xiong Zheng-Ye, Tang Qiang, Gao Mu. Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors. Acta Physica Sinica, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [2] Mao Jiang-Qi, Fan Xu-Yang, Lu Yan-Zhen, Wang Lu-Xia. Exciton-exciton annihilation in molecular aggregations. Acta Physica Sinica, 2021, 70(4): 047302. doi: 10.7498/aps.70.20201399
    [3] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [4] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [5] Mo Ya-Xiao, Piao Sheng-Chun, Zhang Hai-Gang, Li Li. Mode coupling and energy transfer in a range-dependent waveguide. Acta Physica Sinica, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [6] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [7] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [8] Wu Qing-Yang, Xie Guo-Hua, Zhang Zhen-Song, Yue Shou-Zhen, Wang Peng, Chen Yu, Guo Run-Da, Zhao Yi, Liu Shi-Yong. Highly efficient all fluorescent white organic light-emitting devices made by sequential doping. Acta Physica Sinica, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [9] Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia. Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities. Acta Physica Sinica, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [10] Liu Shi-Bing, Liu Yuan-Xing, He Run, Chen Tao. Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser. Acta Physica Sinica, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [11] Xu Deng. Stimulated emission properties of an organic salt-doped polymer film in microcavity. Acta Physica Sinica, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [12] Wang Jun-Zhuan, Shi Zhuo-Qiong, Lou Hao-Nan, Zhang Xin-Luan, Zuo Ze-Wen, Pu Lin, Ma En, Zhang Rong, Zheng You-Liao, Lu Fang, Shi Yi. Influence of Si crystallization evolution on 1.54 μm luminescence in Er-doped Si/Al2O3 multilayer. Acta Physica Sinica, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [13] Shen Han, Liu Jie, Chen Zhi-Feng, Huang Jin-Wang, Shen Yong, Wang Hui, Ji Liang-Nian. Ultrafast energy transfer of a porphyrin-polypyridyl ruthenium (Ⅱ) hybrid linked by a butyl chain. Acta Physica Sinica, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [14] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [16] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [17] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] Zhang Peng, Zhou Yin-Hua, Liu Xiu-Fen, Tian Wen-Jing, Li Min, Zhang Guo. Study on the energy transfer and luminescent properties in PVK:DBVP blend system. Acta Physica Sinica, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [19] Yu Chun-Lei, Dai Shi-Xun, Zhou Gang, Zhang Jun-Jie, Hu Li-Li, Jiang Zhong-Hong. Concentration quenching mechanism in erbium-doped tellurite glass. Acta Physica Sinica, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [20] Feng Zhi-Fang, Wang Yi-Quan, Xu Xing-Sheng, Jiang Shao-Lin, Hao Wei, Cheng Bing-Ying, Zhang Dao-Zhong. Energy transfer between two continuous channels in photonic crystals. Acta Physica Sinica, 2004, 53(1): 62-65. doi: 10.7498/aps.53.62
Metrics
  • Abstract views:  5535
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2021
  • Accepted Date:  26 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回