-
This paper briefly describes the characteristics of all-solid-state lithium-ion battery and the significance of investigation on the internal thermal transport. The related experimental and theoretical works on the thermal transport properties of cathode materials, anode materials, solid-state electrolytes, and electrode-electrolyte interfaces are introduced and summarized. In view of the unclear mechanism of the influence of lithium insertion and extraction process on the thermal conductivity of electrode materials, the challenge of solid-state amorphization to the research of thermal transport, and the limitation of models and methods in heat transport across the interface, we systematically sort out the important scientific issues of thermal transport in all-solid-state lithium-ion battery.
[1] 余启, 刘琦, 王自强, 李宝华 2020 物理学报 69 228805Google Scholar
Yu Q, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar
[2] 拱越, 谷林 2020 物理学报 69 226801Google Scholar
Gong Y, Gu L 2020 Acta Phys. Sin. 69 226801Google Scholar
[3] Kantharaj R, Marconnet A M 2019 Nanosci. Microsc. Therm. 23 128Google Scholar
[4] Koo B, Goli P, Sumant A V, dos Santos Claro P C, Rajh T, Johnson C S, Balandin A A, Shevchenko E V 2014 ACS Nano 8 7202Google Scholar
[5] Lee E, Salgado R A, Lee B, Sumant A V, Rajh T, Johnson C, Balandin A A, Shevchenko E V 2018 Carbon 129 702Google Scholar
[6] Vishwakarma V, Jain A 2017 J. Power Sources 362 219Google Scholar
[7] Meng H, Yu X X, Feng H, Xue Z G, Yang N 2019 Int. J. Heat Mass Transf. 137 1241Google Scholar
[8] Little W A 1959 Can. J. Phys. 37 334Google Scholar
[9] Swartz E T, Pohl R O 1987 Appl. Phys. Lett. 51 2200Google Scholar
[10] Young D A, Maris H J 1989 Phys. Rev. B 40 3685Google Scholar
[11] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[12] Ong Z Y, Zhang G 2015 Phys. Rev. B 91 174302Google Scholar
[13] Zhang W, Fisher T S, Mingo N 2006 J. Heat Transfer 129 483
[14] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar
[15] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar
[16] Sadasivam S, Waghmare U V, Fisher T S 2015 J. Appl. Phys. 117 134502Google Scholar
[17] Polanco C A, Lindsay L 2019 Phys. Rev. B 99 075202Google Scholar
[18] Dhakane A, Varshney V, Liu J, Heinz H, Jain A 2020 Surf. Interfaces 21 10067
[19] Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar
[20] Hu S, Zhang Z, Wang Z, Zeng K, Cheng Y, Chen J, Zhang G 2018 ES Energy Environ. 1 74
[21] Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar
[22] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N, 2000 Solid State Ionics 135 181Google Scholar
[23] Hatchard T D, Dahn J R 2004 J. Electrochem. Soc. 151 A838Google Scholar
[24] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M 2003 Acta Mater. 51 1103Google Scholar
[25] Reimers J N 1992 J. Electrochem. Soc. 139 2091Google Scholar
-
[1] 余启, 刘琦, 王自强, 李宝华 2020 物理学报 69 228805Google Scholar
Yu Q, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar
[2] 拱越, 谷林 2020 物理学报 69 226801Google Scholar
Gong Y, Gu L 2020 Acta Phys. Sin. 69 226801Google Scholar
[3] Kantharaj R, Marconnet A M 2019 Nanosci. Microsc. Therm. 23 128Google Scholar
[4] Koo B, Goli P, Sumant A V, dos Santos Claro P C, Rajh T, Johnson C S, Balandin A A, Shevchenko E V 2014 ACS Nano 8 7202Google Scholar
[5] Lee E, Salgado R A, Lee B, Sumant A V, Rajh T, Johnson C, Balandin A A, Shevchenko E V 2018 Carbon 129 702Google Scholar
[6] Vishwakarma V, Jain A 2017 J. Power Sources 362 219Google Scholar
[7] Meng H, Yu X X, Feng H, Xue Z G, Yang N 2019 Int. J. Heat Mass Transf. 137 1241Google Scholar
[8] Little W A 1959 Can. J. Phys. 37 334Google Scholar
[9] Swartz E T, Pohl R O 1987 Appl. Phys. Lett. 51 2200Google Scholar
[10] Young D A, Maris H J 1989 Phys. Rev. B 40 3685Google Scholar
[11] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[12] Ong Z Y, Zhang G 2015 Phys. Rev. B 91 174302Google Scholar
[13] Zhang W, Fisher T S, Mingo N 2006 J. Heat Transfer 129 483
[14] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar
[15] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar
[16] Sadasivam S, Waghmare U V, Fisher T S 2015 J. Appl. Phys. 117 134502Google Scholar
[17] Polanco C A, Lindsay L 2019 Phys. Rev. B 99 075202Google Scholar
[18] Dhakane A, Varshney V, Liu J, Heinz H, Jain A 2020 Surf. Interfaces 21 10067
[19] Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar
[20] Hu S, Zhang Z, Wang Z, Zeng K, Cheng Y, Chen J, Zhang G 2018 ES Energy Environ. 1 74
[21] Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar
[22] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N, 2000 Solid State Ionics 135 181Google Scholar
[23] Hatchard T D, Dahn J R 2004 J. Electrochem. Soc. 151 A838Google Scholar
[24] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M 2003 Acta Mater. 51 1103Google Scholar
[25] Reimers J N 1992 J. Electrochem. Soc. 139 2091Google Scholar
Catalog
Metrics
- Abstract views: 5836
- PDF Downloads: 306
- Cited By: 0