-
Optical band gap or band gap is an important characteristic parameter of semiconductor materials. In this study, several representative InGaN/GaN multiple quantum well structures are taken as the research objects, and the test conditions that need to be met for the luminescence measurement of the optical band gap of the InGaN well layer at a certain target temperature are discussed in depth. Since the InGaN well layer is a multi-element alloy and is subjected to stress from the GaN barrier layer, there exist not only impurity/defect-related non-radiation centers in the well layer, but also localized potential fluctuation induced by composition fluctuation and quantum confinement Stark effect (QCSE) induced by polarization field. Therefore, in order to obtain a more accurate optical band gap of the InGaN well layer, we propose the following test conditions that the luminescence measurement should meet at least, that is, the influence of the non-radiation centers, the localized centers and the QCSE on the emission process at the target temperature must be eliminated. Although these test conditions need to be further improved, it is expected that this test method can provide valuable guidance or ideas for measuring the semiconductor optical band gap.
-
Keywords:
- optical band gap /
- luminescence /
- non-radiative recombination /
- localization effect /
- quantum confinement Stark effect
[1] Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447
Google Scholar
[2] Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411
Google Scholar
[3] Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501
Google Scholar
[4] Ghobadi N 2013 Int. Nano Lett. 3 2
Google Scholar
[5] Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163
Google Scholar
[6] Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130
Google Scholar
[7] Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538
Google Scholar
[8] Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610
Google Scholar
[9] Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615
Google Scholar
[10] Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042
Google Scholar
[11] Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519
Google Scholar
[12] Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57
Google Scholar
[13] Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453
[14] Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560
[15] Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691
Google Scholar
[16] Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901
[17] De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304
Google Scholar
[18] Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250
Google Scholar
[19] Cho C Y, Park S J 2016 Opt. Express 24 7488
Google Scholar
[20] Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176
Google Scholar
[21] Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525
Google Scholar
[22] Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503
Google Scholar
[23] Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871
Google Scholar
[24] Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129
Google Scholar
[25] Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523
Google Scholar
[26] Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301
Google Scholar
[27] Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932
Google Scholar
[28] Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143
Google Scholar
[29] Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803
Google Scholar
[30] Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508
[31] Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2
Google Scholar
[32] Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116
[33] Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090
Google Scholar
[34] Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1
Google Scholar
[35] Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801
Google Scholar
-
-
[1] Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447
Google Scholar
[2] Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411
Google Scholar
[3] Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501
Google Scholar
[4] Ghobadi N 2013 Int. Nano Lett. 3 2
Google Scholar
[5] Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163
Google Scholar
[6] Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130
Google Scholar
[7] Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538
Google Scholar
[8] Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610
Google Scholar
[9] Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615
Google Scholar
[10] Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042
Google Scholar
[11] Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519
Google Scholar
[12] Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57
Google Scholar
[13] Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453
[14] Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560
[15] Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691
Google Scholar
[16] Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901
[17] De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304
Google Scholar
[18] Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250
Google Scholar
[19] Cho C Y, Park S J 2016 Opt. Express 24 7488
Google Scholar
[20] Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176
Google Scholar
[21] Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525
Google Scholar
[22] Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503
Google Scholar
[23] Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871
Google Scholar
[24] Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129
Google Scholar
[25] Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523
Google Scholar
[26] Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301
Google Scholar
[27] Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932
Google Scholar
[28] Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143
Google Scholar
[29] Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803
Google Scholar
[30] Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508
[31] Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2
Google Scholar
[32] Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116
[33] Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090
Google Scholar
[34] Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1
Google Scholar
[35] Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801
Google Scholar
Catalog
Metrics
- Abstract views: 8372
- PDF Downloads: 185
- Cited By: 0