Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New relation for nuclear charge radius based on isotope chain

Jiao Bao-Bao

Citation:

New relation for nuclear charge radius based on isotope chain

Jiao Bao-Bao
PDF
HTML
Get Citation
  • In this paper, experimental values of nuclear charge radii in database published in 2013 (CR2013 database) are systematically investigated. We analyze the relationship among the three neighboring nuclei based on the nuclear charge radius of isotope chain in the database. Then we obtain a new nuclear charge radius relation for atomic nuclei: the charge radius of a given nucleus is equal to the average of the charge radii of its two neighboring nuclei. We calculate the nuclear charge radius by combining the new relation with CR2013 database, the root-mean-squared deviation (RMSD) between our calculated values and the experimental values in CR2013 database is small: for nuclei with A $\geqslant$ 20 (proton number Z $\geqslant$ 10 and neutron number N $\geqslant$ 10), the RMSD $\approx$ 0.00471 fm; for nuclei with A $\geqslant$ 54, the RMSD reaches an accuracy of RMSD $\approx$ 0.00337 fm. The systematicness of nuclear charge radius in heavy nucleus region is better than that in the light nucleus region, so that the values are more precise in the heavy nucleus region. In the meantime, we also use the odd-even staggering to improve the accuracy of nuclear charge radius: the accuracy increases by about 6.8%. In addition, according to the CR1999 and CR2004 database and the new relation, we make some predictions about some nuclear charge radii, and we find that our predicted values only slightly deviate from the experimental values in CR2013 database. The difference between our predicted value based on CR2013 database and experimental value measured in recent years is small. These results show that the proposed new relation used to study nuclear charge radius is feasible and accurate. The predicted values can provide a valuable reference for future experiments.
      Corresponding author: Jiao Bao-Bao, baobaojiao91@126.com
    • Funds: Project supported by the Doctoral Scientific Research Foundation of East China University of Technology, China (Grant No. DHBK2019151)
    [1]

    Horowitz C J, Piekarewicz J 2001 Phys. Rev. Lett. 86 5647Google Scholar

    [2]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [3]

    Abrahamyan S, Ahmed Z, Albataineh H, et al. 2012 Phys. Rev. Lett. 108 112502Google Scholar

    [4]

    Engfer R, Schneuwly H, Vuilleumier J L, Walter H K, Zehnder A 1974 At. Data Nucl. Data Tables 14 509Google Scholar

    [5]

    Fricke G, Bernhardt C, Heilig K, et al. 1995 At. Data Nucl. Data Tables 60 177Google Scholar

    [6]

    De Vries H, De Jager C W, De Vries C 1987 At. Data Nucl. Data Tables 36 495Google Scholar

    [7]

    Aufmuth P, Heilig K, Steudel A 1987 At. Data Nucl. Data Tables 37 455Google Scholar

    [8]

    Heilig K, Steudel A 1974 At. Data Nucl. Data Tables 14 613Google Scholar

    [9]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, Pittel S, Dean D J 2003 Phys. Rev. C 68 054312Google Scholar

    [10]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [11]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [12]

    Wang N, Li T 2013 Phys. Rev. C 88 011301Google Scholar

    [13]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [14]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [15]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [16]

    Nerlo-Pomorska B, Pomorski K 1993 Z Phys. A 344 359Google Scholar

    [17]

    Nerlo-Pomorska B, Pomorski K 1994 Z Phys. A 348 169Google Scholar

    [18]

    圣宗强, 樊广伟, 钱建发 2015 物理学报 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [20]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [21]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [22]

    Angeli I 1999 Table of Nuclear Root Mean Square Charge Radii (Appendix IV) (Vienna: International Nuclear Data Committee) INDC(HUN)-033 IAEA Nuclear Data Section

    [23]

    Reinhard P G, Nazarewicz W 2021 Phys. Rev. C 103 054310Google Scholar

    [24]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Thakur V, Dhiman S K 2019 Nucl. Phys. A 992 121623Google Scholar

    [27]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [28]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [29]

    Reinhard P G, Nazarewicz W, Garcia Ruiz R F 2020 Phys. Rev. C 101 021301(RGoogle Scholar

    [30]

    Fadeev P, Berengut J C, Flambaum V V 2020 Phys. Rev. A 102 052833Google Scholar

    [31]

    曾谨言 1957 物理学报 13 357Google Scholar

    Zeng J Y 1957 Acta Phys. Sin. 13 357Google Scholar

    [32]

    张双全, 孟杰, 周善贵, 曾谨言 2002 高能物理与核物理 26 252Google Scholar

    Zhang S Q, Meng J, Zhou S G, Zeng J Y 2002 High Energy Physics and Nuclear Physics 26 252Google Scholar

    [33]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [34]

    Borrajo M, Egido J E 2017 Phys. Lett. B 764 328Google Scholar

    [35]

    Satuła W, Dobaczewski J, Nazarewicz W 1998 Phys. Rev. Lett. 81 3599Google Scholar

    [36]

    Qi C, Wyss R 2016 Phys. Scr. 91 013009Google Scholar

    [37]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [38]

    Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B, Arima A 2011 Phys. Rev. C 84 034311Google Scholar

    [39]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156

    [40]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [41]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [42]

    Gorges C, Rodríguez L V, Balabanski D L, et al. 2019 Phys. Rev. Lett. 122 192502Google Scholar

    [43]

    Koszorús Á, Yang X F, Billowes J, et al. 2019 Phys. Rev. C 100 034304Google Scholar

    [44]

    Marsh B A, Day Goodacre T, Sels S, et al. 2018 Nat. Phys. 14 1163Google Scholar

  • 图 1  600个原子核的${\rm{d}}R_{n}(Z, N)$

    Figure 1.  The ${\rm{d}}R_{n}(Z, N)$ of 600 nuclei.

    图 2  (a) Rb (Z = 37), Sr (Z = 38), Y (Z = 39), Zr (Z = 40)和 Nb (Z = 41)同位素链核电荷半径的实验值; (b) Eu (Z = 63), Tb (Z = 65)和Ho (Z = 67)同位素链核电荷半径的实验值

    Figure 2.  (a) Nuclear charge radii of Rb (Z = 37), Sr (Z = 38), Y (Z = 39), Zr (Z = 40) and Nb (Z = 41) elements; (b) nuclear charge radii of Eu (Z = 63), Tb (Z = 65) and Ho (Z = 67) elements

    图 3  (a) Au (Z = 79)同位素链核电荷半径的实验值; (b) Hg (Z = 80)同位素链核电荷半径的实验值

    Figure 3.  (a) Nuclear charge radii of Au (Z = 79) elements; (b) nuclear charge radii of Hg (Z = 80) elements

    图 4  573个原子核的$ {\rm{d}}R_{n}(Z, N) $

    Figure 4.  The $ {\rm{d}}R_{n}(Z, N) $ of 573 nuclei

    图 5  基于CR2013数据库得到的预言值与其他模型[25,33]得到的预言值对比图

    Figure 5.  Difference for predicted values of nuclear charge radius between in our paper (obtained by the CR2013 database) and others’ papers[25,33]

    表 1  基于CR1999数据库得到的预言值与CR2013数据库中的实验值进行对比

    Table 1.  Difference between the predicted values of nuclear charge radius (obtained by the CR1999 database) and experimental values in the CR2013 database

    Nucleus $2013^{{\rm{Exp}}}$/fm $R_{\rm{{th1}} }$/fm dev1/fm Nucleus $2013^{{\rm{Exp}}}$/fm $R_{\rm{{th1}} }$/fm dev1/fm
    $^{23}$Ne 2.9104 2.9355 –0.0251 $^{126}$Sn 4.6833 4.6795 0.0038
    $^{37}$Ar 3.3908 3.3967 –0.0059 $^{127}$Xe 4.7747 4.7761 –0.0014
    $^{39}$Ar 3.4093 3.4151 –0.0058 $^{133}$Xe 4.7831 4.7895 –0.0064
    $^{40}$K 3.4381 3.4434 –0.0053 $^{133}$Ba 4.8286 4.835 –0.0064
    $^{41}$Ca 3.478 3.5068 –0.0288 $^{139}$Ba 4.8513 4.8442 0.0071
    $^{45}$Ca 3.4944 3.5235 –0.0291 $^{141}$Nd 4.9057 4.8992 0.0065
    $^{45}$Ti 3.5939 3.6178 –0.0239 $^{146}$Sm 4.9808 4.9742 0.0066
    $^{47}$Ca 3.4783 3.4862 –0.0079 $^{151}$Sm 5.055 5.0622 –0.0072
    $^{67}$Zn 3.953 3.9575 –0.0045 $^{153}$Sm 5.0925 5.0936 –0.0011
    $^{79}$Kr 4.2034 4.2004 0.003 $^{160}$Dy 5.1951 5.185 0.0101
    $^{81}$Kr 4.1952 4.1956 –0.0004 $^{169}$Yb 5.2771 5.28 –0.0029
    $^{85}$Kr 4.1846 4.1878 –0.0032 $^{175}$Yb 5.3135 5.3166 –0.0031
    $^{85}$Sr 4.2304 4.2358 –0.0054 $^{175}$Hf 5.3191 5.3263 –0.0072
    $^{86}$Rb 4.2025 4.2013 0.0012 $^{187}$Os 5.3933 5.3961 –0.0028
    $^{89}$Sr 4.2407 4.2231 0.0176 $^{193}$Pt 5.4191 5.4202 –0.0011
    $^{89}$Zr 4.2706 4.2543 0.0163 $^{195}$Pb 5.4389 5.4442 –0.0053
    $^{107}$Cd 4.5466 4.548 –0.0014 $^{197}$Hg 5.4412 5.4452 –0.004
    $^{109}$Cd 4.5601 4.5678 –0.0077 $^{201}$Hg 5.4581 5.4614 –0.0033
    $^{109}$Sn 4.5679 4.5734 –0.0055 $^{203}$Hg 5.4679 5.4696 –0.0017
    $^{114}$In 4.6056 4.6083 –0.0027 $^{204}$Tl 5.4704 5.4712 –0.0008
    $^{115}$Cd 4.6114 4.6153 –0.0039 $^{236}$U 5.8431 5.8383 0.0048
    DownLoad: CSV

    表 2  基于CR2004数据库得到的预言值与CR2013数据库中的实验值进行对比

    Table 2.  Difference between the predicted values of nuclear charge radius (obtained by the CR2004 database) and experimental values in the CR2013 database

    Nucleus $ 2013^{ {\rm{Exp} }} $/fm $R_{\rm th2}$/fm dev2/fm
    $^{39}$Ga 3.4595 3.4772 –0.0177
    $^{41}$Ar 3.4251 3.4455 –0.0204
    $^{45}$Ti 3.5939 3.6178 –0.0239
    $^{67}$Zn 3.953 3.9575 –0.0045
    $^{77}$Sr 4.2569 4.2536 0.0033
    $^{117}$Cd 4.6136 4.6258 –0.0122
    $^{126}$Sn 4.6833 4.6795 0.0038
    $^{127}$Xe 4.7747 4.7761 –0.0014
    $^{133}$Xe 4.7831 4.7895 –0.0064
    $^{137}$Eu 4.9762 4.9798 –0.0036
    $^{155}$Yb 5.104 5.1047 –0.0007
    $^{157}$Yb 5.1324 5.1358 –0.0034
    $^{159}$Yb 5.1629 5.1656 –0.0027
    $^{169}$Yb 5.2771 5.2787 –0.0016
    $^{171}$Hf 5.3041 5.2986 0.0055
    $^{175}$Yb 5.3135 5.3166 –0.0031
    $^{189}$Pb 5.4177 5.4215 –0.0038
    $^{195}$Pb 5.4389 5.4428 –0.0039
    $^{204}$Tl 5.4704 5.4725 –0.0021
    DownLoad: CSV

    表 3  基于CR2013数据库得到的预言值与近几年测得的实验值[27,28,40,41]进行对比

    Table 3.  Difference between the predicted values of nuclear charge radius (obtained by the CR2013 database) and experimental values in recent years

    Nucleus $R_{{\rm{th}}3}$/fm $R_{{\rm{exp}}}$/fm dev3/fm
    $^{37}{\rm{K}}$ 3.4179 3.419[28] –0.0011
    $^{48}{\rm{K}}$ 3.4510 3.4825[28] –0.0315
    $^{64}{\rm{Cu}}$ 3.8923 3.8873[27,40] 0.005
    $^{65}{\rm{Zn}}$ 3.9420 3.9164[41] 0.0256
    $^{69}{\rm{Zn}}$ 3.9769 3.9524[41] 0.0245
    DownLoad: CSV
  • [1]

    Horowitz C J, Piekarewicz J 2001 Phys. Rev. Lett. 86 5647Google Scholar

    [2]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [3]

    Abrahamyan S, Ahmed Z, Albataineh H, et al. 2012 Phys. Rev. Lett. 108 112502Google Scholar

    [4]

    Engfer R, Schneuwly H, Vuilleumier J L, Walter H K, Zehnder A 1974 At. Data Nucl. Data Tables 14 509Google Scholar

    [5]

    Fricke G, Bernhardt C, Heilig K, et al. 1995 At. Data Nucl. Data Tables 60 177Google Scholar

    [6]

    De Vries H, De Jager C W, De Vries C 1987 At. Data Nucl. Data Tables 36 495Google Scholar

    [7]

    Aufmuth P, Heilig K, Steudel A 1987 At. Data Nucl. Data Tables 37 455Google Scholar

    [8]

    Heilig K, Steudel A 1974 At. Data Nucl. Data Tables 14 613Google Scholar

    [9]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, Pittel S, Dean D J 2003 Phys. Rev. C 68 054312Google Scholar

    [10]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [11]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [12]

    Wang N, Li T 2013 Phys. Rev. C 88 011301Google Scholar

    [13]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [14]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [15]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [16]

    Nerlo-Pomorska B, Pomorski K 1993 Z Phys. A 344 359Google Scholar

    [17]

    Nerlo-Pomorska B, Pomorski K 1994 Z Phys. A 348 169Google Scholar

    [18]

    圣宗强, 樊广伟, 钱建发 2015 物理学报 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [20]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [21]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [22]

    Angeli I 1999 Table of Nuclear Root Mean Square Charge Radii (Appendix IV) (Vienna: International Nuclear Data Committee) INDC(HUN)-033 IAEA Nuclear Data Section

    [23]

    Reinhard P G, Nazarewicz W 2021 Phys. Rev. C 103 054310Google Scholar

    [24]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Thakur V, Dhiman S K 2019 Nucl. Phys. A 992 121623Google Scholar

    [27]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [28]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [29]

    Reinhard P G, Nazarewicz W, Garcia Ruiz R F 2020 Phys. Rev. C 101 021301(RGoogle Scholar

    [30]

    Fadeev P, Berengut J C, Flambaum V V 2020 Phys. Rev. A 102 052833Google Scholar

    [31]

    曾谨言 1957 物理学报 13 357Google Scholar

    Zeng J Y 1957 Acta Phys. Sin. 13 357Google Scholar

    [32]

    张双全, 孟杰, 周善贵, 曾谨言 2002 高能物理与核物理 26 252Google Scholar

    Zhang S Q, Meng J, Zhou S G, Zeng J Y 2002 High Energy Physics and Nuclear Physics 26 252Google Scholar

    [33]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [34]

    Borrajo M, Egido J E 2017 Phys. Lett. B 764 328Google Scholar

    [35]

    Satuła W, Dobaczewski J, Nazarewicz W 1998 Phys. Rev. Lett. 81 3599Google Scholar

    [36]

    Qi C, Wyss R 2016 Phys. Scr. 91 013009Google Scholar

    [37]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [38]

    Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B, Arima A 2011 Phys. Rev. C 84 034311Google Scholar

    [39]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156

    [40]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [41]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [42]

    Gorges C, Rodríguez L V, Balabanski D L, et al. 2019 Phys. Rev. Lett. 122 192502Google Scholar

    [43]

    Koszorús Á, Yang X F, Billowes J, et al. 2019 Phys. Rev. C 100 034304Google Scholar

    [44]

    Marsh B A, Day Goodacre T, Sels S, et al. 2018 Nat. Phys. 14 1163Google Scholar

  • [1] Sun Shuai, An Rong, Qi Miao, Cao Li-Gang, Zhang Feng-Shou. Microscopic study on low-energy quadrupole states in Ni isotope chain atomic nuclei. Acta Physica Sinica, 2025, 74(3): 032101. doi: 10.7498/aps.74.20240991
    [2] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [3] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [4] Jiao Bao-Bao. Nucleus density based new relationship of nuclear charge radius. Acta Physica Sinica, 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [5] Cao Ying-Yu, Guo Jian-You. Study of nuclear charge radius. Acta Physica Sinica, 2020, 69(16): 162101. doi: 10.7498/aps.69.20191643
    [6] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [7] Sheng Zong-Qiang, Fan Guang-Wei, Qian Jian-Fa. Investigations on the nuclear charge radii. Acta Physica Sinica, 2015, 64(11): 112101. doi: 10.7498/aps.64.112101
    [8] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [9] Chen Xing-Peng, Wang Nan. Ground state properties of Rn isotopes within the relativistic mean field theory. Acta Physica Sinica, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [10] Jiao Peng, Guo Jian-You, Fang Xiang-Zheng. Octupole deformation in even-even Ra isotopes. Acta Physica Sinica, 2010, 59(4): 2369-2374. doi: 10.7498/aps.59.2369
    [11] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [12] Liu Jian-Ye, Guo Wen-Jun, Zuo Wei, Lee Xi-Guo. Isospin effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [13] Zhang Yu-Mei, Xu Fu-Rong. Theoretical investigation of β- decays in neutron-rich nitrogen isotope. Acta Physica Sinica, 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [14] Sheng Zong-Qiang, Guo Jian-You. Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [15] LI WEN-FEI, ZHANG FENG-SHOU, CHEN LIE-WEN. CHEMICAL INSTABILITY AND ISOSPIN EFFECTS IN ISOTOPIC DISTRIBUTIONS. Acta Physica Sinica, 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
    [16] CHEN SHOU-MIAN, WANG ZHEN-XIA, PAN JI-SHENG, ZHENG LI-PING. STUDIES ON THE ANGULAR DISTRIBUTION OF ISOTOPIC PREFERENTIAL SPUTTERING. Acta Physica Sinica, 1989, 38(11): 1785-1791. doi: 10.7498/aps.38.1785
    [17] MA XING-XIAO. THE KINETICS OF LASER ISOTOPE SEPARATION. Acta Physica Sinica, 1979, 28(1): 1-14. doi: 10.7498/aps.28.1
    [18] . Acta Physica Sinica, 1975, 24(2): 151-163. doi: 10.7498/aps.24.151
    [19] TSENG CHIN-YUEN. RADIUS OF NUCLEAR CHARGE DISTRIBUTION AND NUCLEAR BINDING ENERGY. Acta Physica Sinica, 1957, 13(5): 357-364. doi: 10.7498/aps.13.357
    [20] Yan Der Haw. A NOTE ON THE NUMBER OF ISOTOPES. Acta Physica Sinica, 1946, 6(2): 108-111. doi: 10.7498/aps.6.108
Metrics
  • Abstract views:  5051
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2021
  • Accepted Date:  08 April 2022
  • Available Online:  19 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回