Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures and transition properties of AsH+ cation

Hou Qiu-Yu Guan Hao-Yi Huang Yu-Lu Chen Shi-Lin Yang Ming Wan Ming-Jie

Citation:

Electronic structures and transition properties of AsH+ cation

Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie
PDF
HTML
Get Citation
  • Potential energy curves (PECs), dipole moments (DMs) and transition dipole moments (TDMs) of the X2Π, a4Σ, A2Σ, b4Π, B2Δ, C2Σ+, D2Π, 22Σ+ states correlating with the three lowest dissociation channels of AsH+ cation are calculated by using the multireference configuration interaction (MRCI) method. The Davidson correction, core-valence (CV) correlation, and spin-orbit coupling (SOC) effect are all considered. The aug-cc-pV5Z all-electron basis set of H atom and the aug-cc-pwCV5Z-PP pseudopotential basis set of As atom are both selected in the calculation.In the complete active space self-consistent field (CASSCF) calculation, H (1s) and As (4s4p) shell are selected as active orbitals, As (3p3d) shells are selected as closed orbitals, which keeps doubly occupation, the remaining electrons are in the frozen orbitals. In the MRCI calculation, As (3p3d) shells are used for CV correlation, and the calculation accuracy can be improved. The SOC effects are considered with Breit-Pauli operators.All calculated states are bound states. The X2Π is the ground state, which is a deep potential well, the dissociation energy is 3.100 eV. The b4Π, C2Σ+ and D2Π are weakly bound states. The spectroscopic parameters are obtained by solving radial Schrodinger equation. To the best of our knowledge, there has been no study of the spectroscopy of AsH+ cation so far. Comparing with Ⅴ-hydride cations MH+ (M = N, P, As), the orders of the energy levels of the low-lying states for three ions are identical. The dissociation energy and harmonic frequency both decrease with the increase of the atomic weight of M.At spin-free level, the PEC of b4Π state and the PEC of B2Δ state cross at about 1.70 Å. When SOC effects are taken into account, according to the rule of avoid-crossing, the $ {{{\rm{B}}^2}}{\Delta _{3/2}} $state and $ {{{\rm{B}}^2}}{\Delta _{5/2}} $state change to the double potential wells, and the avoided crossing between the $ {{{\rm{B}}^2}}{\Delta _{3/2}} $ ($ {{{\rm{B}}^2}}{\Delta _{3/2}} $) state and ${{\rm{b}}^4}{\Pi _{3/2}}$ (${{\rm{b}}^4}{\Pi _{5/2}}$) state is observed. The transition dipole moment (TDM) of the $ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $, $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ and $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ transition are also calculated. The TDM at the equilibrium distance of the $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ spin-forbidden reaches 0.036 Debye, therefore, the SOC effect plays an important role. Based on the accurate PECs and PDMs, the Franck-Condon factors, spontaneous radiative coefficients, and spontaneous radiative lifetimes of the $ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $, $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $, and $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ transition are also calculated.
      Corresponding author: Wan Ming-Jie, wanmingjie1983@sina.com
    • Funds: Project supported by the Pre-Research Project of Yibin University, China (Grant No. 2019YY06), the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-001), and the Cultivation Project of Yibin University, China (Grant No. 2021PY71).
    [1]

    Dixon R N, Duxbury G, Lamberton H M 1968 Proc. R. Soc. London, Ser. A. 305 271Google Scholar

    [2]

    Arens M, Richter W 1990 J. Chem. Phys. 93 7094Google Scholar

    [3]

    Beutel M, Setzer K D, Shestakov O, Fink E H 1996 J. Mol. Spectrosc. 178 165Google Scholar

    [4]

    Pettersson L G, Langhoff S R 1986 J. Chem. Phys. 85 3130Google Scholar

    [5]

    Matsushita T, Marian C M, Klotz R, Peyerimho S D 1987 Can. J. Phys. 65 155Google Scholar

    [6]

    Balasubramanian K, Nannegari V 1989 J. Mol. Spectrosc. 138 482Google Scholar

    [7]

    Shi D H, Liu H, Sun J F, Zhang J P, Liu Y F, Zhu Z L 2009 J. Mol. Struct. 911 8Google Scholar

    [8]

    Bian W S, Li D H, Cao J W, Ma H T 2022 Phys. Chem. Chem. Phys. 24 10114Google Scholar

    [9]

    赵东锋, 秦成兵, 张群, 陈旸 2009 科学通报 54 3190Google Scholar

    Zhao D F, Qin C B, Zhang Q, Chen Y 2009 Chin. Sci. Bull. 54 3190Google Scholar

    [10]

    Wan M J, Zhang Y G, Song C Q, Gao Tao 2008 J. Phys. B:At. Mol. Opt. Phys. 41 215102Google Scholar

    [11]

    Yang C L, You Y, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [12]

    Bruna P J, Hirsch G, Peyerimhoff S D, Buenker R J 1981 Mol. Phys. 42 875Google Scholar

    [13]

    Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040Google Scholar

    [14]

    Yan B, Zhang X, Li X 2015 Spectrochim. Acta, Part A 142 1Google Scholar

    [15]

    邢伟, 孙金锋, 施德恒, 朱遵略 2018 物理学报 67 193101Google Scholar

    Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 193101Google Scholar

    [16]

    滑亚文, 刘以良, 万明杰 2020 物理学报 69 153101Google Scholar

    Hua Y W, Liu Y L, Wan M J 2020 Acta Phys. Sin. 69 153101Google Scholar

    [17]

    高峰, 张红, 张常哲, 赵文丽, 孟庆田 2021 物理学报 70 153301Google Scholar

    Gao F, Zhang H, Zhang C Z, Zhao W L, Meng Q T 2021 Acta Phys. Sin. 70 153301Google Scholar

    [18]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [19]

    Dunning Jr. T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [20]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [21]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [26]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [27]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [28]

    Moore C E 1971 Atomic Energy Levels vol. Ⅱ (Washington, DC: US Govt Printing Office) p144

    [29]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p460

    [30]

    Tarroni R, Palmieri P, Mitrushenkov A, Tosi P, Bassi D 1997 J. Chem. Phys. 106 10265Google Scholar

    [31]

    Colin R 1989 J. Mol. Spectrosc. 136 387Google Scholar

    [32]

    Li R, Zhai Z, Zhang X M, Jin M X, Xu H F, Yan B 2015 J. Quant. Spectrosc. Radiat. Transfer 157 42Google Scholar

    [33]

    Xiao L D, Liu Y, Li R, Xiao Z Y, Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 266 107593Google Scholar

  • 图 1  AsH+离子X2Π, a4Σ, A2Σ, b4Π, B2Δ, C2Σ+, D2Π和22Σ+态的势能曲线

    Figure 1.  Potential energy curves of the X2Π, a4Σ, A2Σ, b4Π, B2Δ, C2Σ+, D2Π and 22Σ+ states of AsH+ cation.

    图 2  电子态之间的自旋-轨道矩阵元.

    Figure 2.  Spin-orbit matrix elements of the AsH+ anion.

    图 3  Ω态的势能曲线

    Figure 3.  Potential energy curves of the Ω states of AsH+ cation.

    图 4  Ω态的偶极矩

    Figure 4.  Dipole moments of the Ω states of AsH+ cation.

    图 5  AsH+离子的跃迁偶极矩

    Figure 5.  Transition dipole moments of AsH+ cation.

    表 1  AsH+离子Λ-S态的离解关系

    Table 1.  Dissociation relationships of Λ-S states of AsH+

    原子态Λ-S态ΔE/cm–1
    本文工作实验值[28]
    As+(3Pg)+H(2Sg)X2Π, a4Σ,
    A2Σ, b4Π
    00
    As+(1Dg)+H(2Sg)B2Δ, C2Σ+, D2Π8222.188752
    As+(1Sg)+H(2Sg)22Σ+20400.6921252
    DownLoad: CSV

    表 2  Λ-S的光谱常数

    Table 2.  Spectroscopic parameters of the Λ-S states.

    Λ-S statesReωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    X21.51312222.5842.087.36323.1000
    a4Σ1.62111433.4252.396.45281.20815260.18
    A2Σ2.0523598.0335.704.02570.31322481.02
    b43.9651111.8927.811.10240.01524885.54
    B2Δ1.72601139.5249.115.68470.82126654.73
    C2Σ+3.2885140.5422.861.61010.02832911.82
    D23.3767172.3229.151.50050.03532993.70
    22Σ+2.4140532.5447.362.92630.18843887.70
    DownLoad: CSV

    表 3  第五主族氢化物离子的光谱常数对比

    Table 3.  Comparison of the spectroscopy parameters of the Ⅴ-group hydride cations.

    分子离子Λ-S态Reωe/cm–1De/eVTe/cm–1
    NH+X21.080a2810.6a4.40a0
    a4Σ~1.105b~2520b3.66c509d
    A2Σ1.206a1578.2a1.76a22161.27a
    B2Δ1.161a2011.2a3.25a23331a
    PH+X21.4226e2412.79e3.525e0
    a4Σ1.4816e1832.51e1.790e13998e
    A2Σ1.7914e823.68e0.490e24476e
    B2Δ1.5454e1512.20e1.277e26322e
    AsH+X21.5131f2222.58f3.100f0
    a4Σ1.6211f1433.42f1.208f15260.18f
    A2Σ2.0523f598.03f0.313f22481.02f
    B2Δ1.7260f1139.52f0.188f43887.70f
    注: a文献[10] , b文献[29] , c文献[30] , d文献[31] , e文献[14], e本文计算值.
    DownLoad: CSV

    表 4  AsH+离子Ω态的离解关系

    Table 4.  Dissociation relationships of Ω states of AsH+.

    原子态Ω态ΔE/cm–1
    本文工作实验值[28]
    As+(3P0)+H(2S1/2)1/200
    As+(3P1)+H(2S1/2)3/2, 1/2, 1/21090.351061
    As+(3P2)+H(2S1/2)5/2, 3/2, 3/2, 1/2, 1/22721.662540
    As+(1D2)+H(2S1/2)5/2, 3/2, 3/2, 1/2, 1/211252.9410093
    As+(1S0)+H(2S1/2)1/224909.8822593
    DownLoad: CSV

    表 5  Ω的光谱常数

    Table 5.  Spectroscopic parameters of the Ω states.

    Ω statesReωe /cm–1ωeχe /cm–1Be /cm–1De /eVTe /cm–1
    $ {{{\rm{X}}^2}}{\Pi _{1/2}} $1.51462339.1441.997.35923.3140
    $ {{{\rm{X}}^2}}{\Pi _{3/2}} $1.51212344.1142.997.36473.2161696.92
    $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - $1.62221535.8858.516.44471.24817777.19
    $ {{{\rm{a}}^4}}\Sigma _{3/2}^ - $1.62101688.2169.696.45541.24917910.08
    $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - $2.0581685.6435.993.99760.40025773.03
    $ {{{\rm{B}}^2}}{\Delta _{3/2}} $第一势阱1.72851175.3458.145.68570.32130513.22
    第二势阱3.2405333.2649.991.72150.07628497.77
    $ {{{\rm{B}}^2}}{\Delta _{5/2}} $第一势阱1.72591186.5251.975.69230.35630548.89
    第二势阱3.3318283.6049.291.56540.05529071.95
    DownLoad: CSV

    表 6  AsH+离子的弗兰克-康登因子(单位: s-1)、总自发辐射速率和自发辐射寿命(单位: μs)

    Table 6.  Franck-Condon Factors, spontaneous emission rates (unit of s-1) and spontaneous radiative lifetimes τ (unit of μs) of the AsH+ cation.

    跃迁ν′ν″ = 0ν″ = 1ν″ = 2ν″ = 3ν″ = 4ν″ = 5ΣAτ = 1/ΣA
    A2Σ ↔ X2Π00.00560.02800.07220.12750.17150.1843
    2295.525374.756276.274791.312627.481065.8722838.7643.75
    $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $00.68170.24470.06130.01070.00140.0001
    1545.42319.7260.848.080.740.041934.85517
    $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $00.00410.02160.05880.10980.15650.1789
    3036.677910.0910373.68987.85672.572703.6740012.7624.99
    DownLoad: CSV
  • [1]

    Dixon R N, Duxbury G, Lamberton H M 1968 Proc. R. Soc. London, Ser. A. 305 271Google Scholar

    [2]

    Arens M, Richter W 1990 J. Chem. Phys. 93 7094Google Scholar

    [3]

    Beutel M, Setzer K D, Shestakov O, Fink E H 1996 J. Mol. Spectrosc. 178 165Google Scholar

    [4]

    Pettersson L G, Langhoff S R 1986 J. Chem. Phys. 85 3130Google Scholar

    [5]

    Matsushita T, Marian C M, Klotz R, Peyerimho S D 1987 Can. J. Phys. 65 155Google Scholar

    [6]

    Balasubramanian K, Nannegari V 1989 J. Mol. Spectrosc. 138 482Google Scholar

    [7]

    Shi D H, Liu H, Sun J F, Zhang J P, Liu Y F, Zhu Z L 2009 J. Mol. Struct. 911 8Google Scholar

    [8]

    Bian W S, Li D H, Cao J W, Ma H T 2022 Phys. Chem. Chem. Phys. 24 10114Google Scholar

    [9]

    赵东锋, 秦成兵, 张群, 陈旸 2009 科学通报 54 3190Google Scholar

    Zhao D F, Qin C B, Zhang Q, Chen Y 2009 Chin. Sci. Bull. 54 3190Google Scholar

    [10]

    Wan M J, Zhang Y G, Song C Q, Gao Tao 2008 J. Phys. B:At. Mol. Opt. Phys. 41 215102Google Scholar

    [11]

    Yang C L, You Y, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [12]

    Bruna P J, Hirsch G, Peyerimhoff S D, Buenker R J 1981 Mol. Phys. 42 875Google Scholar

    [13]

    Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040Google Scholar

    [14]

    Yan B, Zhang X, Li X 2015 Spectrochim. Acta, Part A 142 1Google Scholar

    [15]

    邢伟, 孙金锋, 施德恒, 朱遵略 2018 物理学报 67 193101Google Scholar

    Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 193101Google Scholar

    [16]

    滑亚文, 刘以良, 万明杰 2020 物理学报 69 153101Google Scholar

    Hua Y W, Liu Y L, Wan M J 2020 Acta Phys. Sin. 69 153101Google Scholar

    [17]

    高峰, 张红, 张常哲, 赵文丽, 孟庆田 2021 物理学报 70 153301Google Scholar

    Gao F, Zhang H, Zhang C Z, Zhao W L, Meng Q T 2021 Acta Phys. Sin. 70 153301Google Scholar

    [18]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [19]

    Dunning Jr. T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [20]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [21]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [26]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [27]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [28]

    Moore C E 1971 Atomic Energy Levels vol. Ⅱ (Washington, DC: US Govt Printing Office) p144

    [29]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p460

    [30]

    Tarroni R, Palmieri P, Mitrushenkov A, Tosi P, Bassi D 1997 J. Chem. Phys. 106 10265Google Scholar

    [31]

    Colin R 1989 J. Mol. Spectrosc. 136 387Google Scholar

    [32]

    Li R, Zhai Z, Zhang X M, Jin M X, Xu H F, Yan B 2015 J. Quant. Spectrosc. Radiat. Transfer 157 42Google Scholar

    [33]

    Xiao L D, Liu Y, Li R, Xiao Z Y, Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 266 107593Google Scholar

  • [1] Liu Ming-Jie, Tian Ya-Li, Wang Yu, Li Xiao-Xiao, He Xiao-Hu, Gong Ting, Sun Xiao-Cong, Guo Gu-Qing, Qiu Xuan-Bing, Li Chuan-Liang. Calculation of spectroscopic constants for O-2 containing spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [3] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [4] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [5] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [6] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [7] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [8] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [9] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [10] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] Wan Ming-Jie, Li Song, Jin Cheng-Guo, Luo Hua-Feng. Theoretical study of laser-cooled SH anion. Acta Physica Sinica, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [12] Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song. Theoretical study of laser cooling of potassium chloride anion. Acta Physica Sinica, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [13] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [14] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [15] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [16] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [17] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [18] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [19] Wei Hong-Yuan, Xiong Xiao-Ling, Liu Guo-Ping, Luo Shun-Zhong. Spectroscopic parameters and potential energy function of the ground state of TiO (X 3 Δr). Acta Physica Sinica, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [20] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
Metrics
  • Abstract views:  6376
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2022
  • Accepted Date:  13 July 2022
  • Available Online:  27 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回