Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Switchable frequency terahertz vortex beam generator

Zhong Min Li Jiu-Sheng

Citation:

Switchable frequency terahertz vortex beam generator

Zhong Min, Li Jiu-Sheng
PDF
HTML
Get Citation
  • Most of the reported vortex beam generators generate vortex beams at a fixed frequency, which limits the practical applications. Therefore, it is inevitable to explore a vortex beam generator, which can actively control the operating frequency. We propose a switchable frequency terahertz vortex beam metasurface, it is freely switchable under single-frequency mode and dual-frequency mode by changing the external temperature, the phase state of vanadium dioxide (VO2) is also changeable. External temperature changes will cause VO2 to transform from insulating state to metallic state. Generally, VO2 conductivity can increase by several orders of magnitude as operating temperature changes. By using the phase change property of VO2, we can obtain a metasurface with switchable operating frequencies. For operating at room temperature, the proposed metasurface behaves as a single-frequency terahertz vortex generator. When (left-handed circularly polarized, LCP) terahertz wave is vertically incident on the metasurface, it generates vortex beams with different topological charge numbers at a frequency of 1.1 THz, and the mode purity is above 85%. The simulation results show that the mode purity of the vortex beam with the topological charge l = 1 is 90%, and the mode purity is about 91.1% for the vortex beam with l = 2, and 85.4% for the vortex beam with l = 3. When the external temperature is of 68 ℃, the designed metasurface becomes a dual-frequency vortex beam generator. At this time, the operating frequencies of vortex beams with different topological charges (l = 1, 2, 3) are 0.7 and 1.23 THz, whose mode purities are both above 60%. That is to say, the corresponding mode purities at topological charge with l = 1 for two operating frequencies are 89.1% and 71.6%, respectively. The mode purities are 83.2% and 94.4% with topological charge l = 2, respectively. The mode purities are 62.4% and 68.2% with topological charge l = 3, respectively. Therefore, the proposed switchable frequency terahertz vortex generator provides a new design idea for working frequency modulation in wireless terahertz communication.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012), the Talent Project of Department of Science and Technology of Zhejiang Province, China (Grant No. 2018R52043), and the Zhejiang Provincial Key R & D Project of China (Grant Nos. 2021C03153, 2022C03166).
    [1]

    Wang D, Li N N, Li Z S, Chen C, Lee B, Wang Q H 2022 Opt. Express 30 3157Google Scholar

    [2]

    Inoue K, Anand A, Cho M 2021 Opt. Lett. 46 1470Google Scholar

    [3]

    Yang Z B, Tang D Y, Hu J, Tang M J, Zhang M K, Cui H L, Wang L H, Chang C, Fan C H, Li J, Wang H B 2021 Small 17 2005814Google Scholar

    [4]

    Oda N 2010 C. R. Physique 11 496Google Scholar

    [5]

    Zhou J, Wang X M, Wang Y X, Huang G R, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W L 2021 Talanta 228 122213Google Scholar

    [6]

    Zhou Z, Cao Z J, Pi Y M 2018 Sensors 18 10Google Scholar

    [7]

    Han J Q, Li L, Yi H, Shi Y 2018 Opt. Mater. Express 8 3470Google Scholar

    [8]

    Bao L, Fu X J, Wu R Y, Ma Q, Cui T J 2021 Adv. Mater. Technol. 6 2001032Google Scholar

    [9]

    李晓楠, 周璐, 赵国 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [10]

    Li W Y, Zhao G Z, Meng T H, Sun R, Guo J Y 2021 Chin. Phys. B 30 058103Google Scholar

    [11]

    Zhang X D, Kong D P, Yuan Y, Mei S, Wang L L, Wang G X 2020 Opt. Commun. 465 125561Google Scholar

    [12]

    Tang S W, Li X K, Pan W K, Zhou J, Jiang T, Ding F 2019 Opt. Express 27 4281Google Scholar

    [13]

    Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M, Zhu W R 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [14]

    Liu KY, Wang G M, Cai T, Dai B J, Xia Y, Li H P, Guo W L 2019 J. Phys. D: Appl. Phys. 52 255002Google Scholar

    [15]

    Xin M B, Xie R S, Zhai G H, Gao J J, Zhang D J, Wang X, An S S, Zheng B W, Zhang H L, Ding J 2020 Opt. Express 28 17374Google Scholar

    [16]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [17]

    Cheng K X, Hu Z D, Kong X L, Shen X P, Wang J C 2022 Opt. Commun. 507 127631Google Scholar

    [18]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [19]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [20]

    Fan J P, Cheng Y Z 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [21]

    Bi F, Ba Z L, Wang X 2018 Opt. Express 26 25693Google Scholar

    [22]

    Jiang S, Chen C, Zhang H L, Chen W D 2018 Opt. Express 26 6466Google Scholar

  • 图 1  频率可切换太赫兹涡旋波束调控示意图 (a) 25 ℃时, LCP波入射、RCP涡旋波输出; (b) 68 ℃时, LCP波入射、两个频率的RCP涡旋波输出

    Figure 1.  Schematic diagram of switchable frequency terahertz vortex beam regulation: (a) At room temperature, the LCP wave incidence and RCP vortex wave output; (b) at 68 ℃, the LCP wave is incidence and RCP vortex wave output under two frequencies.

    图 2  不同温度下超表面单元结构的(a), (c)透射振幅和(b), (d)相位 (a), (b) 室温; (c), (d) 68 ℃

    Figure 2.  (a), (c) Transmission amplitudes and (b), (d) phases of metasurface cell structure under different temperatures: (a), (b) Room temperature; (c), (d) 68 ℃.

    图 3  l = 1, 2, 3时, 频率可切换太赫兹涡旋波束超表面的(a)—(c)相位分布与(d)—(f)单元阵列排布 (a), (d) l = 1; (b), (e) l = 2; (c), (f) l = 3

    Figure 3.  Phase distribution (a)–(c) and cell array arrangement (d)–(f) of switchable frequency terahertz vortex beam metasurface (l = 1, 2, 3): (a), (d) l = 1; (b), (e) l = 2; (c), (f) l = 3.

    图 4  室温下, f = 1.1 THz涡旋波束在不同拓扑荷数下的远场强度、远场相位、电场相位和振幅图 (a) l = 1; (b) l = 2; (c) l = 3

    Figure 4.  At room temperature, far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with different topological charges at a frequency of 1.1 THz: (a) l = 1; (b) l = 2; (c) l = 3.

    图 5  室温下, f = 1.1 THz涡旋波束在不同拓扑荷数下的模式纯度 (a) l = 1; (b) l = 2; (c) l = 3

    Figure 5.  At room temperature, mode purity of vortex beam with different topological charges at a frequency of 1.1 THz: (a) l = 1; (b) l = 2; (c) l = 3.

    图 6  温度为68 ℃时, 拓扑荷数l = 1的涡旋波束的远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 6.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 1 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 7  温度为68 ℃时, 拓扑荷数l = 1的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 7.  Mode purity of vortex beam with topological charge l = 1 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 8  温度为68 ℃时, 拓扑荷数l = 2的涡旋波束远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 8.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 2 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 9  68 ℃时, 拓扑荷数l = 2的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 9.  Mode purity of vortex beam with topological charge l = 2 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 10  温度为68 ℃时, 拓扑荷数l = 3的涡旋波束远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 10.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 3 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 11  温度为68 ℃时, 拓扑荷数l = 3的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Figure 11.  Mode purity of vortex beam with topological charge l = 3 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

  • [1]

    Wang D, Li N N, Li Z S, Chen C, Lee B, Wang Q H 2022 Opt. Express 30 3157Google Scholar

    [2]

    Inoue K, Anand A, Cho M 2021 Opt. Lett. 46 1470Google Scholar

    [3]

    Yang Z B, Tang D Y, Hu J, Tang M J, Zhang M K, Cui H L, Wang L H, Chang C, Fan C H, Li J, Wang H B 2021 Small 17 2005814Google Scholar

    [4]

    Oda N 2010 C. R. Physique 11 496Google Scholar

    [5]

    Zhou J, Wang X M, Wang Y X, Huang G R, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W L 2021 Talanta 228 122213Google Scholar

    [6]

    Zhou Z, Cao Z J, Pi Y M 2018 Sensors 18 10Google Scholar

    [7]

    Han J Q, Li L, Yi H, Shi Y 2018 Opt. Mater. Express 8 3470Google Scholar

    [8]

    Bao L, Fu X J, Wu R Y, Ma Q, Cui T J 2021 Adv. Mater. Technol. 6 2001032Google Scholar

    [9]

    李晓楠, 周璐, 赵国 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [10]

    Li W Y, Zhao G Z, Meng T H, Sun R, Guo J Y 2021 Chin. Phys. B 30 058103Google Scholar

    [11]

    Zhang X D, Kong D P, Yuan Y, Mei S, Wang L L, Wang G X 2020 Opt. Commun. 465 125561Google Scholar

    [12]

    Tang S W, Li X K, Pan W K, Zhou J, Jiang T, Ding F 2019 Opt. Express 27 4281Google Scholar

    [13]

    Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M, Zhu W R 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [14]

    Liu KY, Wang G M, Cai T, Dai B J, Xia Y, Li H P, Guo W L 2019 J. Phys. D: Appl. Phys. 52 255002Google Scholar

    [15]

    Xin M B, Xie R S, Zhai G H, Gao J J, Zhang D J, Wang X, An S S, Zheng B W, Zhang H L, Ding J 2020 Opt. Express 28 17374Google Scholar

    [16]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [17]

    Cheng K X, Hu Z D, Kong X L, Shen X P, Wang J C 2022 Opt. Commun. 507 127631Google Scholar

    [18]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [19]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [20]

    Fan J P, Cheng Y Z 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [21]

    Bi F, Ba Z L, Wang X 2018 Opt. Express 26 25693Google Scholar

    [22]

    Jiang S, Chen C, Zhang H L, Chen W D 2018 Opt. Express 26 6466Google Scholar

  • [1] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [5] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [6] Sun Ying-Lu, Duan Yan-Min, Cheng Meng-Yao, Yuan Xian-Zhang, Zhang Li, Zhang Dong, Zhu Hai-Yong. Triple wavelength-switchable lasing in yellow-green based on frequency mixing of self-Raman operation. Acta Physica Sinica, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [7] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [10] Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen. Optical modulation characteristics of all-dielectric grating at terahertz frequencies. Acta Physica Sinica, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [11] Zhang Yao-Li, Wu Bao-Wei, Wang Yue-E, Han Xiao-Xia. Finite-time stability for switched singular systems. Acta Physica Sinica, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [12] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [13] Liu Feng, Li Yi, Shi Jun-Kai, Hu Xiao-Kun, Li Jiang, Li Yan-Feng, Xing Qi-Rong, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Frequency tunable terahertz pulses generated from GaP waveguide emitter. Acta Physica Sinica, 2012, 61(3): 034210. doi: 10.7498/aps.61.034210
    [14] Ma Xin-Dong, Bi Qin-Sheng. Complicated behaviors as well as the mechanism of the switching circuit. Acta Physica Sinica, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [15] Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao. Family of switched unified chaotic system. Acta Physica Sinica, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [16] Wang Guang-Qiang, Wang Jian-Guo, Li Xiao-Ze, Fan Ru-Yu, Wang Xing-Zhou, Wang Xue-Feng, Tong Chang-Jiang. Frequency measurement of 0.14 THz high-power terahertz pulse. Acta Physica Sinica, 2010, 59(12): 8459-8464. doi: 10.7498/aps.59.8459
    [17] Liu Yang-Zheng, Jiang Chang-Sheng. Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [18] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [19] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han. Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [20] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Xiong Xing, Shi Lei. A class of switchable 3D chaotic systems. Acta Physica Sinica, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
Metrics
  • Abstract views:  3731
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2022
  • Accepted Date:  14 July 2022
  • Available Online:  22 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回