Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of scattering intensity distribution of single microparticles/nanoclusters based on laser levitation

Huang Xue-Feng Chen Chu Li Jia-Xin Zhang Min-Qi Li Sheng-Ji

Citation:

Measurement of scattering intensity distribution of single microparticles/nanoclusters based on laser levitation

Huang Xue-Feng, Chen Chu, Li Jia-Xin, Zhang Min-Qi, Li Sheng-Ji
PDF
HTML
Get Citation
  • The scattering measurement of particulates in gaseous medium is helpful in understanding light transmission, laser detection, combustion radiation and atmospheric environment. In order to explore the scattering characteristics of micron-/nano-sized particles, this paper proposes a method of accurately measuring the scattering intensity distribution of a single micron-sized particles/nanoclusters by combining laser levitation and scattering measurement. An experimental apparatus is first built based on the counter-propagated bi-Bessel beams levitation system and scattering test system. The microparticles/nanoclusters of various matters and sizes are then levitated and their stabilities are evaluated. Finally, the scattering intensity distribution of levitated particles within 2π scattering angle is accurately measured with an angular resolution of 9.2″. The forces acting on particles under laser irradiation and the scattering intensity distribution of different particle parameters are simulated and calculated, and compared with experimental results. The influence of noise on the uncertainty of the scattering measurement system is analyzed in depth, including background light, laser beam, and reflected light from the walls. The results show that the signal-to-noise ratio of scattering measurement for metallic magnesium and aluminum, whether single particles or clusters, are both greater than 20 dB and their maximum values are both 94.6 dB in a range of 2π angle. For graphite nanoclusters, the signal-to-noise ratio in the backscattering direction is relatively poor. The influence of levitation instability on the scattering measurement results is estimated in detail, verifying that the influence of levitation instability in the test system on the scattering measurement is ignorable. Metallic magnesium, aluminum, and graphite particles can be stably levitated by the counter-propagated bi-Bessel beams, with a relative instability of less than 0.15. During the levitation, the photophoretic force plays a dominant role. The scattering intensity distribution of a single micron-sized particles and nanoclusters both conform to the scattering characteristics of Mie particles. Microparticles with large refractive index imaginary parts have stronger forward scattering characteristics. The larger the particle size parameter, the stronger the forward scattering effect becomes. The accurate measurement of the scattering intensity distribution of a single microparticles confirms the versatility and reliability of the levitation scattering test system, providing a new research method for in-depth understanding of the scattering characteristics of substances.
      Corresponding author: Li Sheng-Ji, shengjili@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52027809, 51976050).
    [1]

    Sioutas C, Kim S, Chang M, Terrell L L, Gong H 2000 Atmos. Environ. 34 4829Google Scholar

    [2]

    Zhang H, Nie W, Liang Y, Chen J, Peng H 2021 Opt. Laser. Eng. 144 106642Google Scholar

    [3]

    Minton A P 2016 Anal. Biochem. 501 4Google Scholar

    [4]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 物理学报 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [5]

    王清华, 张颖颖, 来建成, 李振华, 贺安之 2007 物理学报 56 1203Google Scholar

    Wang Q H, Zhang Y Y, Lai J C, Li Z H, He A Z 2007 Acta Phys. Sin. 56 1203Google Scholar

    [6]

    Collins M, Kauppila A, Karmenyan A, Gajewski L, Szewczyk K, Kinnunen M, Myllylä R 2010 Laser Applications in Life Sciences Oulu, Finland, June 9–11, 2010 p737619

    [7]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [8]

    Omori R, Kobayashi T, Suzuki A 1997 Opt. Lett. 22 816Google Scholar

    [9]

    Esseling M, Rose P, Alpmann C, Denz C 2012 Appl. Phys. Lett. 101 131

    [10]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [11]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [12]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [13]

    Gong Z, Pan Y L, Wang C 2016 Rev. Sci. Instrum. 87 156

    [14]

    Gong Z, Pan Y L, Videen G, Wang C 2017 Chem. Phys. Lett. 689 100Google Scholar

    [15]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 物理学报 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [16]

    Grehan G, Gouesbet G 1980 Appl. Opt. 19 2485Google Scholar

    [17]

    付成花 2017 物理学报 66 097301Google Scholar

    Fu C H 2017 Acta Phys. Sin. 66 097301Google Scholar

    [18]

    Gouesbet G 2019 J. Quant. Spectrosc. Radiat. Transfer 225 258Google Scholar

    [19]

    Misconi N Y, Oliver J P, Ratcliff K F, Rusk E T, Wang W X 1990 Appl. Opt. 29 2276Google Scholar

    [20]

    Nieminen T A, Loke V L Y, Stilgoe A B, Knöner G, Brańczyk A M, Heckenberg N R, Rubinsztein-Dunlop H 2007 J. Opt. A: Pure Appl. Opt. 9 S196Google Scholar

    [21]

    Palm K J, Murray J B, Narayan T C, Munday J N 2018 ACS Photonics 5 4677Google Scholar

    [22]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [23]

    Querry M R 1985 Optical Constants Contractor Report CRDCCR-85034

    [24]

    Mackowski D W 1989 Int. J. Heat Mass Transfer. 32 843Google Scholar

    [25]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [26]

    Redding B, Hill S C, Alexson D, Wang C, Pan Y L 2015 Opt. Express 23 3630Google Scholar

  • 图 1  激光悬浮的微粒粒子/纳米团簇散射光强分布测量实验装置示意图 (a) 光学结构; (b) 机械机构

    Figure 1.  Schematic of experimental setup for measuring scattered light intensity distribution of laser levitated microparticles/nanoclusters: (a) The optical structure; (b) the mechanical structure.

    图 2  相对不稳定度的数据处理流程图

    Figure 2.  Flow chart of relative instability data processing.

    图 3  (a) 散射强度的原始信号; (b) 滤波后的信号; (c) 散射强度分布的矢极图

    Figure 3.  (a) Raw signals of scattering intensity; (b) filtered signals; (c) contour of scattering intensity distribution in polar coordinates.

    图 4  (a) 镁粒子的扫描电镜图; (b) 悬浮镁粒子的波动性; (c) 20次重复测量的信号

    Figure 4.  (a) SEM picture of Mg microparticle; (b) fluctuation of levitated Mg microparticle; (c) signals of 20 repetitive measurements.

    图 5  (a) 第一组镁粒子的悬浮图; (b) 第一组镁粒子的散射强度分布矢极图; (c) 第二组镁粒子的悬浮图; (d) 第二组镁粒子的散射强度分布矢极图

    Figure 5.  (a) A picture of the first levitated Mg microparticle; (b) contour of scattering intensity distribution of the first levitated Mg microparticle in polar coordinates; (c) the picture of the second levitated Mg microparticle; (d) contour of scattering intensity distribution of the second levitated Mg microparticle in polar coordinates.

    图 6  (a) 纳米铝团簇的悬浮图; (b) 纳米铝团簇的散射强度分布矢极图; (c) 纳米石墨团簇的悬浮图; (d) 纳米石墨团簇的散射强度分布矢极图

    Figure 6.  (a) The picture of levitated Al nanocluster; (b) contour of scattering intensity distribution of levitated Al nanocluster in polar coordinates; (c) the picture of levitated graphite nanocluster; (d) contour of scattering intensity distribution of levitated graphite nanocluster in polar coordinates.

    图 7  激光作用于空气中粒子的受力示意图

    Figure 7.  Schematic of the force exerted by laser on microparticles in the air.

    图 8  粒子波动对散射测量影响的示意图

    Figure 8.  Schematic of the influence of microparticle fluctuation on scattering test.

    图 9  (a) 环境光信号; (b) 加入滤光片前后悬浮激光散射信号; (c) 粒子悬浮前后悬浮激光散射信号; (d) 标准工况下散射信号与其他信号

    Figure 9.  (a) Signal from background light; (b) laser scattering signals adding filters or not; (c) laser scattering signals of levitated microparticle or not; (d) scattering signals and other signals under standard operating conditions.

    图 10  散射强度测量信噪比矢极图 (a) 第一组镁粒子; (b) 第二组镁粒子; (c) 纳米铝团簇; (d) 纳米石墨团簇

    Figure 10.  Contour of signal-to-noise ratio of scattering intensity measurement in polar coordinates: (a) The first levitated Mg microparticle; (b) the second levitated Mg microparticle; (c) levitated Al nanocluster; (d) levitated graphite nanocluster.

    图 11  球形粒子的散射强度分布(α = 25) (a) 水; (b) 镁; (c) 铝; (d) 石墨

    Figure 11.  Contour of scattering intensity distribution of spherical microparticles in polar coordinates: (a) Water; (b) Mg; (c) Al; (d) graphite.

    图 12  不同尺寸参数对散射强度的影响 (a) α = 2.5 (水); (b) α = 12.5 (水); (c) α = 25 (水); (d) α = 2.5 (Mg); (e) α = 12.5 (Mg); (f) α = 25 (Mg)

    Figure 12.  Effect of different size parameters on scattering intensity: (a) α = 2.5 (water); (b) α = 12.5 (water); (c) α = 25 (water); (d) α = 2.5 (Mg); (e) α = 12.5 (Mg); (f) α = 25 (Mg).

    表 1  金属镁、铝和石墨粒子受激光作用时的光泳力和辐射压力

    Table 1.  Photophorestic force and radiation pressure of Mg, Al, and graphite microparticles exerted by the laser beam.

    类型密度折射率[2426]热导率光泳力辐射压力重力
    ρg/(103 kg·m–3)mks/(W·m–1·K–1)Fp/(10–12 N)Fa/(10–14 N)G/(10–12 N)
    Mg1.740.766 + 4.783 i1567.026.861.12
    Al2.700.728 + 5.66 i2374.627.751.73
    C2.301.588 + 0.8174 i1517.255.531.47
    DownLoad: CSV
  • [1]

    Sioutas C, Kim S, Chang M, Terrell L L, Gong H 2000 Atmos. Environ. 34 4829Google Scholar

    [2]

    Zhang H, Nie W, Liang Y, Chen J, Peng H 2021 Opt. Laser. Eng. 144 106642Google Scholar

    [3]

    Minton A P 2016 Anal. Biochem. 501 4Google Scholar

    [4]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 物理学报 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [5]

    王清华, 张颖颖, 来建成, 李振华, 贺安之 2007 物理学报 56 1203Google Scholar

    Wang Q H, Zhang Y Y, Lai J C, Li Z H, He A Z 2007 Acta Phys. Sin. 56 1203Google Scholar

    [6]

    Collins M, Kauppila A, Karmenyan A, Gajewski L, Szewczyk K, Kinnunen M, Myllylä R 2010 Laser Applications in Life Sciences Oulu, Finland, June 9–11, 2010 p737619

    [7]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [8]

    Omori R, Kobayashi T, Suzuki A 1997 Opt. Lett. 22 816Google Scholar

    [9]

    Esseling M, Rose P, Alpmann C, Denz C 2012 Appl. Phys. Lett. 101 131

    [10]

    Huisken J, Stelzer E H K 2002 Opt. Lett. 27 1223Google Scholar

    [11]

    Meresman H, Wills J B, Summers M, McGloin D, Reid J P 2009 Phys. Chem. Chem. Phys. 11 11333Google Scholar

    [12]

    Pan Y L, Hill S C, Coleman M 2012 Opt. Express 20 5325Google Scholar

    [13]

    Gong Z, Pan Y L, Wang C 2016 Rev. Sci. Instrum. 87 156

    [14]

    Gong Z, Pan Y L, Videen G, Wang C 2017 Chem. Phys. Lett. 689 100Google Scholar

    [15]

    黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣 2014 物理学报 63 178802Google Scholar

    Huang X F, Li S J, Zhou D H, Zhao G J, Wang G Q, Xu J R 2014 Acta Phys. Sin. 63 178802Google Scholar

    [16]

    Grehan G, Gouesbet G 1980 Appl. Opt. 19 2485Google Scholar

    [17]

    付成花 2017 物理学报 66 097301Google Scholar

    Fu C H 2017 Acta Phys. Sin. 66 097301Google Scholar

    [18]

    Gouesbet G 2019 J. Quant. Spectrosc. Radiat. Transfer 225 258Google Scholar

    [19]

    Misconi N Y, Oliver J P, Ratcliff K F, Rusk E T, Wang W X 1990 Appl. Opt. 29 2276Google Scholar

    [20]

    Nieminen T A, Loke V L Y, Stilgoe A B, Knöner G, Brańczyk A M, Heckenberg N R, Rubinsztein-Dunlop H 2007 J. Opt. A: Pure Appl. Opt. 9 S196Google Scholar

    [21]

    Palm K J, Murray J B, Narayan T C, Munday J N 2018 ACS Photonics 5 4677Google Scholar

    [22]

    McPeak K M, Jayanti S V, Kress S J, Meyer S, Iotti S, Rossinelli A, Norris D J 2015 ACS Photonics 2 326Google Scholar

    [23]

    Querry M R 1985 Optical Constants Contractor Report CRDCCR-85034

    [24]

    Mackowski D W 1989 Int. J. Heat Mass Transfer. 32 843Google Scholar

    [25]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [26]

    Redding B, Hill S C, Alexson D, Wang C, Pan Y L 2015 Opt. Express 23 3630Google Scholar

  • [1] Huang Xue-Feng, Liu Min, Lu Shan, Zhang Min-Qi, Li Sheng-Ji, Luo Dan. Levitation of air-borne strong-absorbing nanoparticle clusters dominated by photophorestic force and migration behavior under thermophorestic force. Acta Physica Sinica, 2024, 73(13): 134206. doi: 10.7498/aps.73.20240288
    [2] Guan Dan-Dan, Jia Jin-Feng. Surface physics in China. Acta Physica Sinica, 2023, 72(23): 236801. doi: 10.7498/aps.72.20231858
    [3] Dong Pan, Tian Chang, Li Jie, Wang Tao, Yu Hai-Tao, Su Ming-Xu, He Jia-Long, Shi Jin-Shui. Mie scattering based on-line measurement of droplet from vacuum arc. Acta Physica Sinica, 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [4] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [5] Wang De, Shen Rong, Liu Can-Can, Wei Shi-Qiang, Lu Kun-Quan. Evaporation enhancement effect of TiO2 nanoparticles on silicone oil in electrorheological fluid suspension. Acta Physica Sinica, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [6] Zhao Hu, Hua Deng-Xin, Mao Jian-Dong, Zhou Chun-Yan. Correction to near-range multiwavelength lidar optical parameter based on the measurements of particle size distribution. Acta Physica Sinica, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [7] Zhao Hong-Gang, Wen Ji-Hong, Yang Hai-Bin, Lü Lin-Mei, Wen Xi-Sen. Acoustic absorption mechanism and optimization of a rubber slab with cylindrical cavities. Acta Physica Sinica, 2014, 63(13): 134303. doi: 10.7498/aps.63.134303
    [8] Sun Lan-Jun, Tian Zhao-Shuo, Ren Xiu-Yun, Zhang Yan-Chao, Fu Shi-You. Modeling the bidirectional reflectance distribution function of seawater with spilt oil. Acta Physica Sinica, 2014, 63(13): 134211. doi: 10.7498/aps.63.134211
    [9] Feng Dai-Li, Feng Yan-Hui, Zhang Xin-Xin. Melting and freezing behavior of aluminum nanoclusters with small size. Acta Physica Sinica, 2013, 62(8): 083602. doi: 10.7498/aps.62.083602
    [10] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [11] Liu Xi-Chuan, Gao Tai-Chang, Qin Jian, Liu Lei. Effects analysis of rainfall on microwave transmission characteristics. Acta Physica Sinica, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [12] Wang Hui-Qin, Liu Zheng-Dong. The influence on the radiation characteristics of an amorphous nanocluster by introducing photonic crystals. Acta Physica Sinica, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [13] Wu Da-Jian, Liu Xiao-Jun. Study on the optical absorption of gold nanoshells by Mie theory. Acta Physica Sinica, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [14] Ke Wei-Na, Chen Qian, Qian Meng-Lu. Forward Mie scattering method applied to the measurement of the R(t) curve of single bubble sonoluminescence. Acta Physica Sinica, 2008, 57(6): 3629-3635. doi: 10.7498/aps.57.3629
    [15] Wang Qing-Hua, Zhang Ying-Ying, Lai Jian-Cheng, Li Zhen-Hua, He An-Zhi. Application of Mie theory in biological tissue scattering characteristics analysis. Acta Physica Sinica, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [16] Zhao Hong-Gang, Liu Yao-Zong, Wen Ji-Hong, Yu Dian-Long, Wen Xi-Sen. Analysis of the anechoic properties of viscoelastic coatings with periodically distributed cavities. Acta Physica Sinica, 2007, 56(8): 4700-4707. doi: 10.7498/aps.56.4700
    [17] Zuo Hao-Yi, Yang Jing-Guo. Retrieving of aerosol size distribution based on the measurement of aerosol optical depth. Acta Physica Sinica, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [18] Wang Zhi-Hua, He Ying-Hong, Zuo Hao-Yi, Andrew Yuk Sun Cheng, Yang Jing-Guo. The correction of short-range Mie scattering laser lidar returns based on the Gaussian character of laser beam. Acta Physica Sinica, 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [19] Sheng Yang, Ning Xi-Jing. Dynamic simulations for cage-shaping of carbon atom in vapour-phase. Acta Physica Sinica, 2004, 53(4): 1039-1043. doi: 10.7498/aps.53.1039
    [20] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
Metrics
  • Abstract views:  4093
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2023
  • Accepted Date:  06 June 2023
  • Available Online:  29 June 2023
  • Published Online:  05 September 2023

/

返回文章
返回