-
Photoconductivity (PC) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize two heterostructure configurations of InAlAs/InP grown by molecular beam epitaxy (MBE) on the InP (100) substrate. The sample A is the type called normal heterostructure, which has an In0.52Al0.48As layer grown on InP, while sample B is called the inverse type formed by an InP cap layer on In0.52Al0.48As. The front excitation was employed in both PC experiment and PL experiment and the measurements were conducted at 77 K. The PC spectrum of sample A shows an abnormal step-like drop when the photon energy is larger than the energy band gap of In0.52Al0.48As. The phenomenon implies that the conductance of sample is a multilayer effect including the contribution of interfacial two-dimensional electron gas (2DEG). Moreover, a conductance peak is observed at 916 nm below the bandgap of InP. Accordingly, an intense luminescent peak at the wavelength manifests in the PL spectrum. The origin of the 916 nm peak is attributed to the recombination of 2DEG electrons with the valence band holes excited near the interface. However, the spectral feature of the above energy does not exist in both PC and PL spectra of sample B. This difference may be explained by the different interface electronic structures of the inverse interface. For the latter case, considering that a graded variation in In-As-P composition is related to the inverse interface of InP/InAlAs, the band bending effect should be weak. In such a case, the bound energy of 2DEG in the interface potential well is raised closer to the conductance band of the bulk. Consequently, the recombination energy of 2DEG at the inverse interface with the holes in the valence band is close to the band-to-band transition of InP bulk and the luminescence is difficult to be distinguished from that of bulk InP. The work also demonstrates that the comparative study with both PC technique and PL technique is helpful to provide a full insight into the interface electronic property.
-
Keywords:
- semiconductor spectroscopy /
- semiconductor interface /
- photoconductance /
- photoluminescence
[1] Burstein L, Shapira Y, Bennett B R, Alamo J A D 1996 J. Appl. Phys 78 7163Google Scholar
[2] Holthoff E L, Heaps D A, Pellegrino P M 2010 IEEE Sens. J. 10 572Google Scholar
[3] Demir I, Elagoz S 2017 Superlattices Microstruct. 104 140Google Scholar
[4] Ramirez D A, Hayat M M, Karve G, Campbell J C, Teich M. C 2005 IEEE Leos Meeting Conference. IEEE Sydney NSW Australia, October 22–28, 2005 p387
[5] Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2003 Physica E 17 229Google Scholar
[6] Yerino C D, Liang B, Huffaker D L, Simmonds P J, Lee M L, 2017 J. Vac. Sci. Technol., B 35 010801Google Scholar
[7] Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2002 Mater Sci. Eng. , C 21 231Google Scholar
[8] Bohrer J, Krost A, Heitz R, Heinrichsdorff F, Eckey L, Bimberg D, Cerva H 1997 Appl. Phys. Lett. 68 1072Google Scholar
[9] Vignaud D, Wallart X, Mollot F, Sermage B 1998 J. Appl. Phys. 84 2138Google Scholar
[10] Vignaud D, Wallart X, Mollot F 1998 J. Appl. Phys. 76 2324Google Scholar
[11] Duez V, Vanbeìsien O, Lippens D, Vignaud D, Wallart X, Mollot F 1999 J. Appl. Phys. 85 2202Google Scholar
[12] Pocas L C, Duarte J L, Dias I F L, Laureto E, Lourenco S A, Filho, Toginho D O, Meneses E A, Mazzaro I, Harmand J C 2002 J. Appl. Phys. 91 8999Google Scholar
[13] Gocalinska A M, Mura E E, Manganaro M, Juska G, Pelucchi E 2020 Phys. Rev. B 101 165310Google Scholar
[14] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2018 J. Alloys Compd. 736 29Google Scholar
[15] Esmaielpour H, Whiteside V R, Hirst L C, Tischler J G, Walters R J, Sellers I R 2017 J. Appl. Phys. 121 235301Google Scholar
[16] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2019 Appl. Phys. A 125 134Google Scholar
[17] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2020 J. Appl. Phys. 59 022001Google Scholar
[18] Madelung O 2004 Semiconductors: Data Handbook (1st Ed.) (New York: Springer-Heidelberg Press) p139
[19] Gong B, Zha F X, 2020 Rev. Sci. Instrum. 91 013105Google Scholar
[20] Hurd C M, McAlister S P, McKinnon W R, Stewart B R, Day D J, Mandeville P, SpringThorpe A J 1988 J. Appl. Phys. 63 4706Google Scholar
[21] Meng X, Tan C H, Dimler S, David J P R, Ng J S 2014 Opt. Express 22 22608Google Scholar
[22] Gilinsky A M, Dmitriev D V, Toropov A I, Zhuravlev K S 2017 Semicond. Sci. Technol. 32 095009Google Scholar
[23] Bergman J P, Lundstrom T, Monemar B, Amano H, Akasaki I 1996 Appl. Phys. Lett. 69 3456Google Scholar
-
-
[1] Burstein L, Shapira Y, Bennett B R, Alamo J A D 1996 J. Appl. Phys 78 7163Google Scholar
[2] Holthoff E L, Heaps D A, Pellegrino P M 2010 IEEE Sens. J. 10 572Google Scholar
[3] Demir I, Elagoz S 2017 Superlattices Microstruct. 104 140Google Scholar
[4] Ramirez D A, Hayat M M, Karve G, Campbell J C, Teich M. C 2005 IEEE Leos Meeting Conference. IEEE Sydney NSW Australia, October 22–28, 2005 p387
[5] Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2003 Physica E 17 229Google Scholar
[6] Yerino C D, Liang B, Huffaker D L, Simmonds P J, Lee M L, 2017 J. Vac. Sci. Technol., B 35 010801Google Scholar
[7] Hellara J, Hassen F, Maaref H, Souliere V, Monteil Y 2002 Mater Sci. Eng. , C 21 231Google Scholar
[8] Bohrer J, Krost A, Heitz R, Heinrichsdorff F, Eckey L, Bimberg D, Cerva H 1997 Appl. Phys. Lett. 68 1072Google Scholar
[9] Vignaud D, Wallart X, Mollot F, Sermage B 1998 J. Appl. Phys. 84 2138Google Scholar
[10] Vignaud D, Wallart X, Mollot F 1998 J. Appl. Phys. 76 2324Google Scholar
[11] Duez V, Vanbeìsien O, Lippens D, Vignaud D, Wallart X, Mollot F 1999 J. Appl. Phys. 85 2202Google Scholar
[12] Pocas L C, Duarte J L, Dias I F L, Laureto E, Lourenco S A, Filho, Toginho D O, Meneses E A, Mazzaro I, Harmand J C 2002 J. Appl. Phys. 91 8999Google Scholar
[13] Gocalinska A M, Mura E E, Manganaro M, Juska G, Pelucchi E 2020 Phys. Rev. B 101 165310Google Scholar
[14] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2018 J. Alloys Compd. 736 29Google Scholar
[15] Esmaielpour H, Whiteside V R, Hirst L C, Tischler J G, Walters R J, Sellers I R 2017 J. Appl. Phys. 121 235301Google Scholar
[16] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2019 Appl. Phys. A 125 134Google Scholar
[17] Smiri B, Fraj I, Saidi F, Mghaieth R, Maaref H 2020 J. Appl. Phys. 59 022001Google Scholar
[18] Madelung O 2004 Semiconductors: Data Handbook (1st Ed.) (New York: Springer-Heidelberg Press) p139
[19] Gong B, Zha F X, 2020 Rev. Sci. Instrum. 91 013105Google Scholar
[20] Hurd C M, McAlister S P, McKinnon W R, Stewart B R, Day D J, Mandeville P, SpringThorpe A J 1988 J. Appl. Phys. 63 4706Google Scholar
[21] Meng X, Tan C H, Dimler S, David J P R, Ng J S 2014 Opt. Express 22 22608Google Scholar
[22] Gilinsky A M, Dmitriev D V, Toropov A I, Zhuravlev K S 2017 Semicond. Sci. Technol. 32 095009Google Scholar
[23] Bergman J P, Lundstrom T, Monemar B, Amano H, Akasaki I 1996 Appl. Phys. Lett. 69 3456Google Scholar
Catalog
Metrics
- Abstract views: 2230
- PDF Downloads: 109
- Cited By: 0