Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator

Li Yu-Qing Wang Hong-Guang Zhai Yong-Gui Yang Wen-Jin Wang Yue Li Yun Li Yong-Dong

Citation:

Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator

Li Yu-Qing, Wang Hong-Guang, Zhai Yong-Gui, Yang Wen-Jin, Wang Yue, Li Yun, Li Yong-Dong
PDF
HTML
Get Citation
  • The mode competition in an overmoded relativistic backward wave oscillator is studied through theoretical analysis and three-dimensional particle-in-cell simulation in this work. Based on the quality factor and coupling impedance, the mode selection for a TM02 mode backward wave oscillator is achieved, and its output power and magnetic field strength are optimized in the simulation.The quality factor is related to the group velocity and end reflection of each mode. The dispersion curves of some non-axisymmetric modes are very close, and the group velocities are basically equal. Therefore, the end reflection needs considering to distinguish between the quality factors of different modes. In frequency domain simulation, analyzing the quality factor of each mode by using the S11 parameter curve can avoid calculating the end reflection.The three-dimensional simulation results show that the coupling impedance and quality factor jointly affect the operating mode. When the coupling impedance advantage of the working mode is not obvious, changing the resonant frequency of the high-frequency structure can affect the beam-wave interaction process, thereby changing the excitation mode. When the advantage is obvious, the beam-wave interaction of the excitation mode will not be destroyed by the resonant mode, and other modes of microwave output mainly come from the conversion of the same frequency modes. Due to the constant dispersion curve, the effect of resonance on the mode is essentially the effect of the quality factor on the mode dominated by the end reflection.The insensitive parameters and the electron beam radius obtained from the simulation are used as the optimal parameters, and the automatic optimization algorithm is used in combination with the two-dimensional simulation to perform multi-objective optimization design in the above device. The final output power of the backward wave oscillator reaches 534 MW, with an efficiency of 23.64%, an increase of 221.7% compared with the efficiency of the original device. The device operating mode remains stable, with a power ratio of TM02 mode reaching 94.95%.
      Corresponding author: Zhai Yong-Gui, zhaiyg@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175176, 12235013).
    [1]

    本福德, 斯威格, 谢米洛格鲁 著 (江伟华, 张驰 译) 2009 高功率微波 (北京: 国防工业出版社) 第1, 2页

    Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defence Industry Press) pp1, 2

    [2]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Ye H, Chen C H, Hui N, Teng Y 2015 IEEE International Vacuum Electronics Conference (IVEC) Beijing, China April 27–29, 2015 p15412768

    [5]

    Xiao R Z, Shi Y C, Wang H D, Zhang G, Sun J 2020 Phys. Plasmas 27 043102Google Scholar

    [6]

    Teng Y, Cao Y B, Song Z M, Ye H, Shi Y C, Chen C H, Sun J 2014 Phys. Plasmas 21 123108Google Scholar

    [7]

    Teng Y, Wang D Y, Li S, Yang D W, Shi Y C, Wu P, Wu X 2019 Phys. Plasmas 26 053105Google Scholar

    [8]

    Vlasov A N, Shkvarunets A G, Rodgers J C, Carmel Y, Antonsen T M, Abuelfadl T M, Lingze D, Cherepenin V A, Nusinovich G S, Botton M 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [9]

    Zhang D, Zhang J, Zhong H H, Jin Z, Yuan Y 2014 Phys. Plasmas 21 491Google Scholar

    [10]

    刘国治, 陈昌华 2021 相对论返波管导论 (北京: 科学出版社) 第90页

    Liu G Z, Chen C H 2021 Introduction to Relativistic Backwave Oscillator (Beijing: Science Press) p90

    [11]

    张军, 钟辉煌 2005 物理学报 54 206Google Scholar

    Zhang J, Zhong H H, 2005 Acta Phys. Sin. 54 206Google Scholar

    [12]

    Qiang L P, Teng Y, Zhang J W, Luo W, Li Y D, Wang Y, Wang H G 2022 IEEE Trans. Electron Devices 69 7025Google Scholar

    [13]

    李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 21 1866

    Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Power Laser Part. Beams 21 1866

    [14]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y A 2010 Phys. Plasmas 17 073107Google Scholar

    [15]

    Fang A P, Liang S S, Li Y D, Wang H G, Wang Y 2020 Chin. Phys. B 29 100205Google Scholar

    [16]

    Yang W J, Li Y D, Wang H G, Jiang M, Cao M, Liu C L 2023 IEEE Trans. Electron Devices 70 3892Google Scholar

    [17]

    Le Chap T 1998 An Introduction to Genetic Algorithms (Cambridge: MIT Press

    [18]

    Chou S Y, Chang Y H, Shen C Y 2008 Eur. J. Operational Res. 189 132Google Scholar

    [19]

    Bugaev S P, Cherepenin V A 1990 IEEE Trans. Plasma Sci. 18 518Google Scholar

    [20]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882Google Scholar

    [21]

    金建铭 著 (尹家贺 译) 2017 高等电磁场理论 (北京: 电子工业出版社) 第183—186页

    Jin J M 2017 Theory and Computation of Electromagnetic Fields (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp183–186

  • 图 1  RBWO结构参数示意

    Figure 1.  Structure of RBWO.

    图 2  慢波结构色散曲线

    Figure 2.  Dispersion diagrams of SWS.

    图 3  色散曲线相近的各模式耦合阻抗

    Figure 3.  Coupling impedance of modes with similar dispersion curves.

    图 4  谐振腔反射器对两种模式的反射系数

    Figure 4.  Reflection coefficient of cavity for both modes.

    图 5  谐振腔反射器结构示意

    Figure 5.  Structure of the resontants.

    图 6  不同结构输出功率随阴极位置变化

    Figure 6.  Variation of output power of different structures with position of cathode.

    图 7  RBWO高频结构模型

    Figure 7.  High frequency structure model of RBWO.

    图 8  RBWO三维结构

    Figure 8.  Three-dimensional structure of the RBWO.

    图 9  RBWO的输出功率

    Figure 9.  Output power of RBWO.

    图 10  电场幅值在x-y截面上的分布

    Figure 10.  Distribution of electric fields in x-y section.

    图 11  高频结构中不同模式的S11参数

    Figure 11.  S11 parameters for different modes in high frequency structure

    图 12  rb = 7.0 mm, L = 9 mm时的PIC模拟结果 (a) 电子相空间分布; (b) 输出频谱

    Figure 12.  PIC simulation results when rb = 7.0 mm, L = 9 mm: (a) Electronic phase spatial distribution; (b) output spectrum.

    图 13  rb = 7.4 mm, L = 9 mm时的PIC模拟结果 (a) 电子相空间分布; (b) 输出频谱

    Figure 13.  PIC simulation results when rb = 7.4 mm, L = 9 mm: (a) Electronic phase spatial distribution; (b) output spectrum.

    图 14  输出TM21模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Figure 14.  Simulation results when TM21 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude

    图 16  输出TM02模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Figure 16.  Simulation results when TM02 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude.

    图 15  输出TE41模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Figure 15.  Simulation results when TE41 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude.

    图 17  不同输出半径下模式纯度随漂移段长度的变化

    Figure 17.  Variation of the mode purity with L under different rout.

    图 18  提取腔半径对输出功率和模式纯度的影响

    Figure 18.  Effect of re on output power and model purity.

    图 19  输出功率

    Figure 19.  Output power.

    图 21  电场幅值分布

    Figure 21.  Electric field amplitude.

    表 1  谐振腔反射器参数

    Table 1.  Parameters of the resontants.

    序号Lr1/mmLr2/mmLb/mmrr1/mmrr2/mmra/mmrb/mmrc/mm
    13.06.02.011.014.09.29.210.8
    26.77.09.014.114.110.89.210.8
    DownLoad: CSV

    表 2  PIC模拟结果

    Table 2.  PIC simulation results.

    序号L/mmrb/mmTM02功率
    占比/%
    主要竞争模式
    及占比/%
    17.07.035.27TM0124.36
    27.57.042.09TE4127.92
    38.07.073.69TE0113.91
    48.57.033.24TE4130.12
    59.07.046.75TE4132.53
    610.07.053.70TM0119.66
    711.07.054.95TM0122.72
    DownLoad: CSV

    表 3  L = 9 mm时不同模式功率占比与品质因数

    Table 3.  Power ratio and Q of different modes when L = 9 mm.

    模式
    TM02 TE41 TM01 TE01 其他
    功率占比/% 46.75 32.53 19.09 1.52 0.01
    谐振频率 f/GHz 26.00 25.98 26.09 25.95
    Q 23.32 6493.75 783.48 462.57
    DownLoad: CSV

    表 4  不同模式的工作参数

    Table 4.  Operating parameters.

    模式
    TM02TE41TM21
    工作频率/GHz26.0225.8324.57
    谐振频率f/GHz26.0025.9724.38
    rout/mm10.810.610.7
    L/mm9.011.07.0
    Q3610.83935.62890.6
    DownLoad: CSV

    表 5  参数变化范围及精度

    Table 5.  Parameter variation range and precision.

    参数初始值变化范围精度
    L/mm7.0[5.0, 11.0]0.1
    re/mm16.5[14.0, 20.0]0.1
    rb/mm7.0[6.4, 7.6]0.1
    LB/mm125.0[100.0, 160.0]0.1
    B/T2.8[0.4, 3.0]0.01
    DownLoad: CSV

    表 6  各参数优化结果

    Table 6.  Optimization results of each parameter.

    参数L/mmre/mmrb/mmLB/mmB/T
    优化结果6.515.57.2118.11.42
    DownLoad: CSV
  • [1]

    本福德, 斯威格, 谢米洛格鲁 著 (江伟华, 张驰 译) 2009 高功率微波 (北京: 国防工业出版社) 第1, 2页

    Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defence Industry Press) pp1, 2

    [2]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Ye H, Chen C H, Hui N, Teng Y 2015 IEEE International Vacuum Electronics Conference (IVEC) Beijing, China April 27–29, 2015 p15412768

    [5]

    Xiao R Z, Shi Y C, Wang H D, Zhang G, Sun J 2020 Phys. Plasmas 27 043102Google Scholar

    [6]

    Teng Y, Cao Y B, Song Z M, Ye H, Shi Y C, Chen C H, Sun J 2014 Phys. Plasmas 21 123108Google Scholar

    [7]

    Teng Y, Wang D Y, Li S, Yang D W, Shi Y C, Wu P, Wu X 2019 Phys. Plasmas 26 053105Google Scholar

    [8]

    Vlasov A N, Shkvarunets A G, Rodgers J C, Carmel Y, Antonsen T M, Abuelfadl T M, Lingze D, Cherepenin V A, Nusinovich G S, Botton M 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [9]

    Zhang D, Zhang J, Zhong H H, Jin Z, Yuan Y 2014 Phys. Plasmas 21 491Google Scholar

    [10]

    刘国治, 陈昌华 2021 相对论返波管导论 (北京: 科学出版社) 第90页

    Liu G Z, Chen C H 2021 Introduction to Relativistic Backwave Oscillator (Beijing: Science Press) p90

    [11]

    张军, 钟辉煌 2005 物理学报 54 206Google Scholar

    Zhang J, Zhong H H, 2005 Acta Phys. Sin. 54 206Google Scholar

    [12]

    Qiang L P, Teng Y, Zhang J W, Luo W, Li Y D, Wang Y, Wang H G 2022 IEEE Trans. Electron Devices 69 7025Google Scholar

    [13]

    李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 21 1866

    Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Power Laser Part. Beams 21 1866

    [14]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y A 2010 Phys. Plasmas 17 073107Google Scholar

    [15]

    Fang A P, Liang S S, Li Y D, Wang H G, Wang Y 2020 Chin. Phys. B 29 100205Google Scholar

    [16]

    Yang W J, Li Y D, Wang H G, Jiang M, Cao M, Liu C L 2023 IEEE Trans. Electron Devices 70 3892Google Scholar

    [17]

    Le Chap T 1998 An Introduction to Genetic Algorithms (Cambridge: MIT Press

    [18]

    Chou S Y, Chang Y H, Shen C Y 2008 Eur. J. Operational Res. 189 132Google Scholar

    [19]

    Bugaev S P, Cherepenin V A 1990 IEEE Trans. Plasma Sci. 18 518Google Scholar

    [20]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882Google Scholar

    [21]

    金建铭 著 (尹家贺 译) 2017 高等电磁场理论 (北京: 电子工业出版社) 第183—186页

    Jin J M 2017 Theory and Computation of Electromagnetic Fields (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp183–186

  • [1] Liu Wei, Jia Qing, Zheng Jian. Wavefront distortion and compensation for weakly relativistic vortex beams propagating in plasma. Acta Physica Sinica, 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Yang Yu-Lin, Dong Zhi-Wei. Physical analysis and numerical simulations of ultra wideband plasma relativistic microwave noise amplifier. Acta Physica Sinica, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [3] Wang Yao-Ting, Luo Lan-Yue, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Non-equilibrium transport of charged particles in a wall-confined decaying plasma under an externally applied electric field. Acta Physica Sinica, 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [4] Yang De-Wen, Chen Chang-Hua, Shi Yan-Chao, Xiao Ren-Zhen, Teng Yan, Fan Zhi-Qiang, Liu Wen-Yuan, Song Zhi-Min, Sun Jun. Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator. Acta Physica Sinica, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [5] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Dong Zhi-Wei. Competitions among modes in magnetically insulated transmission line oscillator. Acta Physica Sinica, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [6] Wang Hong-Guang, Liu Peng-Fei, Zhang Jian-Wei, Li Yong-Dong, Cao Yi-Bing, Sun Jun. Particle-in-cell simulation on effect of collector outgassing on relativistic backward oscillator. Acta Physica Sinica, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [7] Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian. Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Acta Physica Sinica, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [8] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [9] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [10] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [11] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] Wang Hui-Hui, Meng Lin, Liu Da-Gang, Liu La-Qun, Yang Chao. Numerical optimization study of PIC/PSO for RBWO. Acta Physica Sinica, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [13] Wang Yu, Chen Zai-Gao, Lei Yi-An. Simulation of 0.14 THz relativistic backward-wave oscillator filled with plasma. Acta Physica Sinica, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [14] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [15] Li Wei, Liu Yong-Gui. Simulation investigation of the 2 mode operating tunable relativistic magnetron with axial radiation. Acta Physica Sinica, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [16] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [17] Li Xiao-Ze, Wang Jian-Guo, Tong Chang-Jiang, Zhang Hai. PIC-MCC simulations on characteristics of RBWO filled with different gases. Acta Physica Sinica, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [18] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [19] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Relativistic effects on resonance absorption in laser-plasma interaction. Acta Physica Sinica, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [20] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
Metrics
  • Abstract views:  2902
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2023
  • Accepted Date:  20 October 2023
  • Available Online:  02 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回