Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak

Long Ting Ke Rui Wu Ting Gao Jin-Ming Cai Lai-Zhong Wang Zhan-Hui Xu Min

Citation:

Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak

Long Ting, Ke Rui, Wu Ting, Gao Jin-Ming, Cai Lai-Zhong, Wang Zhan-Hui, Xu Min
PDF
HTML
Get Citation
  • In a magnetic confinement fusion device, the plasma undergoing nuclear fusion reaction must be maintained in a high-temperature and high-density confinement state for a long enough time to release high energy, while the heat loads on the divertor target plates need to be reduced to avoid damage to wall at the same time. The latter is one of the key challenges of ITER and commercial fusion reactors in future. Divertor detachment provides an effective solution to reduce the heat load on the target plate of tokamak. However, this may result in the change of plasma states at the boundary, thus affecting the plasma confinement. In this paper, edge plasma poloidal rotation and turbulence momentum transport are studied experimentally during the divertor detachment in the L-mode discharge of HL-2A tokamak. The detachment is achieved by injecting a mixture of gas (60% nitrogen+40% deuterium) into the divertor. The gas mixture is injected by pulsed injection, with pulse length being in a range of 5–20 ms. During the divertor detached phase, both the ion saturation current density and the heat flux to the outer target plate decrease considerably. The enhanced radiation is also observed in the divertor and X-point region. It is found that in the process of attachment-to-pre-detachement, the $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow velocity in the near scrape-off layer (SOL) changes from ion magnetic drift direction to electron magnetic drift direction. The turbulent driving force of poloidal flow, which is characterized by the negative radial gradient of momentum transfer flux (Reynolds stress), shows the same trend. In the detached phase, both the $ \boldsymbol{E}\times \boldsymbol{B} $flow and the Reynolds force become very small. Therefore, the dynamics of $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow velocity in the SOL is consistent with the evolution of rotation driving effect induced by the turbulent momentum transport. Combined with the $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow measured by the probe in the SOL and the beam emission spectrum inside the LCFS, the $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity shearing rate near the LCFS can be inferred. Compared with the attached state, when the divertor is detached, the edge poloidal flow shearing rate decreases significantly, leading to the obviously enhanced turbulence level. Under the influence of both enhanced turbulent transport and radiation, the global confinement degrades moderately. The energy confinement time decreases about 15% and the confinement factor $ {H}_{89-P} $ decreases about 10%. These results indicate that edge turbulent transport and plasma rotation dynamics play a role in the core-edge coupling process in which the divertor detachment affects the global confinement.
      Corresponding author: Long Ting, longt@swip.ac.cn ; Xu Min, minxu@swip.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy Development Research Program, China (Grant No. 2022YFE03100004), the National Natural Science Foundation of China (Grant No. 12375210), the Program of the Science and Technology Department of Sichuan Province, China (Grant No. 2022JDRC0014), and the Young Talents Program of China National Nuclear Corporation (Grant No. 2021JZYF-03).
    [1]

    Loarte A, Lipschultz B, Kukushkin A S, et al. 2007 Nucl. Fusion 47 S203Google Scholar

    [2]

    Shimada M, Campbell D J, Mukhovatov V, et al. 2007 Nucl. Fusion 47 S1Google Scholar

    [3]

    Wang L, Wang H Q, Ding S, et al. 2021 Nat. Commun. 12 1365Google Scholar

    [4]

    Leonard A W, Mahdavi M A, Allen S L, et al. 1997 Phys. Rev. Lett. 78 4769Google Scholar

    [5]

    ITER-EDA 1999 Nucl. Fusion 39 2391Google Scholar

    [6]

    Vianello N, Carralero D, Tsui C K, et al. 2020 Nucl. Fusion 60 016001Google Scholar

    [7]

    Kallenbach A, Bernert M, Beurskens M, et al. 2015 Nucl. Fusion 55 053026Google Scholar

    [8]

    Huber A, Brezinsek S, Groth M, et al. 2013 J. Nucl. Mater. 438 S139Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Liang A S, Zhong W L, Zou X L, et al. 2018 Phys. Plasmas 25 022501Google Scholar

    [11]

    Long T, Diamond P H, Xu M, Ke R, Nie L, Li B, Wang Z H, Xu J Q, Duan X R 2019 Nucl. Fusion 59 106010Google Scholar

    [12]

    Long T, Diamond P H, et al. 2021 Nucl. Fusion 61 126066Google Scholar

    [13]

    龙婷, Diamond P H, 柯锐, 洪荣杰, 许敏, 聂林, 王占辉, 李波, 高金明, HL-2A团队 2022 核聚变与等离子体物理 42 152

    Long T, Diamond P H, Ke R, Hong R J, Xu M, Nie L, Wang Z H, Li B, Gao J M, HL-2A Team 2022 Nucl. Fusion Plasma Phys. 42 152

    [14]

    Gao J M, Cai L Z, Zou X L, et al. 2021 Nucl. Fusion 61 066024Google Scholar

    [15]

    Duan X R, Xu M, Zhong W L, et al. 2022 Nucl. Fusion 62 042020Google Scholar

    [16]

    Huang Z H, Cheng J, Wu N, Yan L W, Xu H B, Wang W, Miao X G, Yi K Y, Xu J Q, Cai L Z, Shi Z B, Dong J Q, Liu Y, Zhong W L, Yang Q W, Xu M, Duan X R 2022 Plasma Sci. Technol. 24 054002Google Scholar

    [17]

    Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202Google Scholar

    [18]

    高金明, 程钧, 严龙文, 李伟, 聂林, 冯北滨, 陈程远, 卢杰, 易萍, 季小全 2015 核聚变与等离子体物理 35 1Google Scholar

    Gao J M, Cheng J, Yan L W, Li W, Nie L, Feng B B, Chen C Y, Lu J, Yi P, Ji X Q 2015 Nucl. Fusion Plasma Phys. 35 1Google Scholar

    [19]

    Zheng D L, Zhang K, Cui Z Y, Sun P, Dong C F, Lu P, Fu B Z, Liu Z T, Shi Z B, Yang Q W 2018 Plasma Sci. Technol. 20 105103Google Scholar

    [20]

    Meng L Y, Liu J B, Xu J C, et al. 2020 Plasma Phys. Control. Fusion 62 065008Google Scholar

    [21]

    Wu N, Yi K, Wang W, Huang Z, Yan L, Cheng J, Du H, Shi Z, Zhong W, Xu M 2022 Proceedings of the 6th Asia-Pacific Conference on Plasma Physics, Remote October 9-14, 2022 p1

    [22]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Technol. 25 015102Google Scholar

    [23]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing) p84

    [24]

    Nie L, Xu M, Ke R, Yuan B D, Wu Y F, Cheng J, Lan T, Yu Y, Hong R J, Guo D, Ting L, Dong Y B, Zhang Y P, Song X M, Zhong W L, Wang Z H, Sun A P, Xu J Q, Chen W, Yan L W, Zou X L, Duan X R, team H-A 2018 Nucl. Fusion 58 036021Google Scholar

    [25]

    Schmid B, Manz P, Ramisch M, Stroth U 2017 Phys. Rev. Lett. 118 055001Google Scholar

    [26]

    Diamond P H, Kim Y B 1991 Phys. Fluids B 3 1626Google Scholar

    [27]

    Manz P, Xu M, Fedorczak N, Thakur S C, Tynan G R 2012 Phys. Plasmas 19 012309Google Scholar

    [28]

    Shaing K C, Crume E C 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [29]

    Connor J W, Wilson H R 2000 Plasma Phys. Control. Fusion 42 R1Google Scholar

    [30]

    Xu M, Tynan G R, Diamond P H, Manz P, Holland C, Fedorczak N, Thakur S C, Yu J H, Zhao K J, Dong J Q, Cheng J, Hong W Y, Yan L W, Yang Q W, Song X M, Huang Y, Cai L Z, Zhong W L, Shi Z B, Ding X T, Duan X R, Liu Y 2012 Phys. Rev. Lett. 108 245001Google Scholar

    [31]

    Ke R, Wu Y F, McKee G R, Yan Z, Jaehnig K, Xu M, Kriete M, Lu P, Wu T, Morton L A, Qin X, Song X M, Cao J Y, Ding X T, Duan X R 2018 Rev. Sci. Instrum. 89 10D122Google Scholar

    [32]

    Wesson J 2011 Tokamaks (Fourth edition) (Oxford: Oxford University Press) p177

    [33]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [34]

    Simmet E, Team A 1996 Plasma Phys. Control. Fusion 38 689Google Scholar

    [35]

    Zhong W L, Shi Z B, Yang Z J, et al. 2016 Phys. Plasmas 23 060702Google Scholar

  • 图 1  偏滤器脱靶实验的主要放电参数 (a)环向磁场; (b)等离子体电流; (c)中心弦平均密度; (d)中性束加热功率; (e)偏滤器注气; (f)靶板离子饱和流密度; (g)外靶板热流密度; (h)外靶板电子温度; (i)主真空室热辐射信号; (j)氮辐射强度

    Figure 1.  The main discharge parameters in the divertor detachment experiment: (a) Toroidal field; (b) plasma current; (c) central line-averaged density; (d) NBI heating power; (e) gas puffing in divertor; (f) ion saturation current density onto target; (g) heat flux onto outer target; (h) electron temperature at outer target; (i) bolometer signal through the main chamber; (j) nitrogen radiation intensity.

    图 2  (a)偏滤器脱靶前和(b)偏滤器脱靶后的可见光图像

    Figure 2.  The visible light images taken by a CCD camera (a) before the detachment and (b) after the divertor detachment.

    图 3  位于HL-2A托卡马克外中平面的静电探针阵列示意图

    Figure 3.  Schematic diagram of Langmuir probe array on the outer mid-plane of HL-2A tokamak.

    图 4  偏滤器脱靶过程 (a)电子温度; (b)电势; (c) $ \boldsymbol{E}\times \boldsymbol{B} $极向流速; (d)湍流雷诺应力的演化

    Figure 4.  (a) Temperature; (b) potential; (c) $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity and (d) Reynolds force during the divertor detachment.

    图 5  偏滤器脱靶过程 (a)等离子体边缘$ \boldsymbol{E}\times \boldsymbol{B} $极向速度剪切; (b)密度扰动的时频自功率谱; (c)能量约束时间; (d)能量约束增强因子的变化

    Figure 5.  (a) Edge $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity shear; (b) time-frequency auto-spectrum of density fluctuations; (c) plasma energy confinement time; (d) energy confinement enhanced factor during the divertor detachment.

    图 6  偏滤器脱靶过程 (a)等离子体密度; (b)电子温度; (c)压强; (d)总的$ {v}_{\theta , \boldsymbol{E}\times \boldsymbol{B}} $和逆磁速度$ {v}_{\theta , \nabla p} $

    Figure 6.  (a) Density, (b) temperature, (c) pressure, (d) total $ {v}_{\theta , \boldsymbol{E}\times \boldsymbol{B}} $ and diamagnetic velocity $ {v}_{\theta , \nabla p} $.

  • [1]

    Loarte A, Lipschultz B, Kukushkin A S, et al. 2007 Nucl. Fusion 47 S203Google Scholar

    [2]

    Shimada M, Campbell D J, Mukhovatov V, et al. 2007 Nucl. Fusion 47 S1Google Scholar

    [3]

    Wang L, Wang H Q, Ding S, et al. 2021 Nat. Commun. 12 1365Google Scholar

    [4]

    Leonard A W, Mahdavi M A, Allen S L, et al. 1997 Phys. Rev. Lett. 78 4769Google Scholar

    [5]

    ITER-EDA 1999 Nucl. Fusion 39 2391Google Scholar

    [6]

    Vianello N, Carralero D, Tsui C K, et al. 2020 Nucl. Fusion 60 016001Google Scholar

    [7]

    Kallenbach A, Bernert M, Beurskens M, et al. 2015 Nucl. Fusion 55 053026Google Scholar

    [8]

    Huber A, Brezinsek S, Groth M, et al. 2013 J. Nucl. Mater. 438 S139Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Liang A S, Zhong W L, Zou X L, et al. 2018 Phys. Plasmas 25 022501Google Scholar

    [11]

    Long T, Diamond P H, Xu M, Ke R, Nie L, Li B, Wang Z H, Xu J Q, Duan X R 2019 Nucl. Fusion 59 106010Google Scholar

    [12]

    Long T, Diamond P H, et al. 2021 Nucl. Fusion 61 126066Google Scholar

    [13]

    龙婷, Diamond P H, 柯锐, 洪荣杰, 许敏, 聂林, 王占辉, 李波, 高金明, HL-2A团队 2022 核聚变与等离子体物理 42 152

    Long T, Diamond P H, Ke R, Hong R J, Xu M, Nie L, Wang Z H, Li B, Gao J M, HL-2A Team 2022 Nucl. Fusion Plasma Phys. 42 152

    [14]

    Gao J M, Cai L Z, Zou X L, et al. 2021 Nucl. Fusion 61 066024Google Scholar

    [15]

    Duan X R, Xu M, Zhong W L, et al. 2022 Nucl. Fusion 62 042020Google Scholar

    [16]

    Huang Z H, Cheng J, Wu N, Yan L W, Xu H B, Wang W, Miao X G, Yi K Y, Xu J Q, Cai L Z, Shi Z B, Dong J Q, Liu Y, Zhong W L, Yang Q W, Xu M, Duan X R 2022 Plasma Sci. Technol. 24 054002Google Scholar

    [17]

    Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202Google Scholar

    [18]

    高金明, 程钧, 严龙文, 李伟, 聂林, 冯北滨, 陈程远, 卢杰, 易萍, 季小全 2015 核聚变与等离子体物理 35 1Google Scholar

    Gao J M, Cheng J, Yan L W, Li W, Nie L, Feng B B, Chen C Y, Lu J, Yi P, Ji X Q 2015 Nucl. Fusion Plasma Phys. 35 1Google Scholar

    [19]

    Zheng D L, Zhang K, Cui Z Y, Sun P, Dong C F, Lu P, Fu B Z, Liu Z T, Shi Z B, Yang Q W 2018 Plasma Sci. Technol. 20 105103Google Scholar

    [20]

    Meng L Y, Liu J B, Xu J C, et al. 2020 Plasma Phys. Control. Fusion 62 065008Google Scholar

    [21]

    Wu N, Yi K, Wang W, Huang Z, Yan L, Cheng J, Du H, Shi Z, Zhong W, Xu M 2022 Proceedings of the 6th Asia-Pacific Conference on Plasma Physics, Remote October 9-14, 2022 p1

    [22]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Technol. 25 015102Google Scholar

    [23]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing) p84

    [24]

    Nie L, Xu M, Ke R, Yuan B D, Wu Y F, Cheng J, Lan T, Yu Y, Hong R J, Guo D, Ting L, Dong Y B, Zhang Y P, Song X M, Zhong W L, Wang Z H, Sun A P, Xu J Q, Chen W, Yan L W, Zou X L, Duan X R, team H-A 2018 Nucl. Fusion 58 036021Google Scholar

    [25]

    Schmid B, Manz P, Ramisch M, Stroth U 2017 Phys. Rev. Lett. 118 055001Google Scholar

    [26]

    Diamond P H, Kim Y B 1991 Phys. Fluids B 3 1626Google Scholar

    [27]

    Manz P, Xu M, Fedorczak N, Thakur S C, Tynan G R 2012 Phys. Plasmas 19 012309Google Scholar

    [28]

    Shaing K C, Crume E C 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [29]

    Connor J W, Wilson H R 2000 Plasma Phys. Control. Fusion 42 R1Google Scholar

    [30]

    Xu M, Tynan G R, Diamond P H, Manz P, Holland C, Fedorczak N, Thakur S C, Yu J H, Zhao K J, Dong J Q, Cheng J, Hong W Y, Yan L W, Yang Q W, Song X M, Huang Y, Cai L Z, Zhong W L, Shi Z B, Ding X T, Duan X R, Liu Y 2012 Phys. Rev. Lett. 108 245001Google Scholar

    [31]

    Ke R, Wu Y F, McKee G R, Yan Z, Jaehnig K, Xu M, Kriete M, Lu P, Wu T, Morton L A, Qin X, Song X M, Cao J Y, Ding X T, Duan X R 2018 Rev. Sci. Instrum. 89 10D122Google Scholar

    [32]

    Wesson J 2011 Tokamaks (Fourth edition) (Oxford: Oxford University Press) p177

    [33]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [34]

    Simmet E, Team A 1996 Plasma Phys. Control. Fusion 38 689Google Scholar

    [35]

    Zhong W L, Shi Z B, Yang Z J, et al. 2016 Phys. Plasmas 23 060702Google Scholar

  • [1] Zhang En-Hao, Cai Hong-Bo, Du Bao, Tian Jian-Min, Zhang Wen-Shuai, Kang Dong-Guo, Zhu Shao-Ping. Heat flow of laser-ablated gold plasma in inertial confinement fusion hohlraum. Acta Physica Sinica, 2020, 69(3): 035204. doi: 10.7498/aps.69.20191423
    [2] Li Xin-Xia, Li Guo-Zhuang, Liu Hong-Bo. Helicon wave damping coefficient of Chinese fusion engineering testing reactor plasma. Acta Physica Sinica, 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [3] Li Liu-He, Liu Hong-Tao, Luo Ji, Xu Yi. Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it. Acta Physica Sinica, 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [4] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [5] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [6] Zheng Xing-Wei, Li Jian-Gang, Hu Jian-Sheng, Li Jia-Hong, Cao Bin, Wu Jin-Hua. Investgation of gas puffing and supersonic molecular beam injection density feedback expriments on EAST. Acta Physica Sinica, 2013, 62(15): 155202. doi: 10.7498/aps.62.155202
    [7] Ou Jing, Yang Jin-Hong. The effect of the divertor operation regimes on the plasma parallel flow in the edge of a tokamak. Acta Physica Sinica, 2012, 61(7): 075201. doi: 10.7498/aps.61.075201
    [8] Cao Zhu-Rong, Zhang Hai-Ying, Dong Jian-Jun, Yuan Zheng, Miao Wen-Yong, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun. High dynamic range imaging and application to laser-plasma diagnostics in inertial confinement fusion (ICF) experiment. Acta Physica Sinica, 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [9] Liu Jin-Yuan, Chen Long, Wang Feng, Wang Nan, Duan Ping. Characteristics of charging, motion and temperature of dust particulates in magnetic fusion devices. Acta Physica Sinica, 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [10] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [11] Zou Xiao-Bing, Wang Xin-Xin, Luo Cheng-Mu, Han Min. Energy spectra of ion beams from gas-puff Z-pinch plasma. Acta Physica Sinica, 2005, 54(5): 2133-2137. doi: 10.7498/aps.54.2133
    [12] Wang Chen, Gu Yuan, Fu Si-Zu, Zhou Guan-Lin, Wu Jiang, Wang Wei, Sun Yu-Qin, Dong Jia-Xin, Sun Jin-Ren, Wang Rui-Rong, Ni Yuan-Long, Wan Bing-Gen, Huang Guang-Long, Zhang Guo-Peng, Lin Zun-Qi, Wang Shi-Ji. . Acta Physica Sinica, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [13] Li Jun-Feng, Cao Jin-Xiang, Zhang Chuan-Bao, Song Fa-Lun. . Acta Physica Sinica, 2002, 51(7): 1542-1548. doi: 10.7498/aps.51.1542
    [14] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [15] LI QI-LIANG, ZHENG YONG-ZHEN, CHENG FA-YIN, DENG XIAO-BO, DENG DONG-SHENG, YOU PEI-LIN, LIU GUI-ANG, CHEN XIANG-DONG. THE ANALYTIC STUDY OF PLASMA TRANSPORT IN TOKAMAK DIVERTOR REGION AND SCRAPE OFF LAYER. Acta Physica Sinica, 2001, 50(3): 507-511. doi: 10.7498/aps.50.507
    [16] XIA MENG-FEN. STOCHASTIC CURRENT DRIVEN BY A WAVE. Acta Physica Sinica, 1983, 32(3): 338-345. doi: 10.7498/aps.32.338
    [17] LUO ZHENG-MING, TEN LI-JIAN. THE SLOWING DOWN OF FAST PARTICLES PASSING THROUGTH FUSION PLASMA AND THE ENERGY GAIN OF FUSION REACTION. Acta Physica Sinica, 1982, 31(9): 1166-1175. doi: 10.7498/aps.31.1166
    [18] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [19] HUO YU-KUN. THE SLOWING DOWN-DIFFUSION OF α PARTICLES IN FUSION PLASMA. Acta Physica Sinica, 1980, 29(3): 320-329. doi: 10.7498/aps.29.320
    [20] . Acta Physica Sinica, 1975, 24(5): 309-316. doi: 10.7498/aps.24.309
Metrics
  • Abstract views:  2017
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2023
  • Accepted Date:  14 February 2024
  • Available Online:  27 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回