Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se

ZHENG Shijiao YANG Wenyue YANG Zhi XU Lichun FENG Lin CHEN Bo XUE Lin

Citation:

Intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se

ZHENG Shijiao, YANG Wenyue, YANG Zhi, XU Lichun, FENG Lin, CHEN Bo, XUE Lin
cstr: 32037.14.aps.74.20241701
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The novel layered semiconductor material bismuth oxyselenide (Bi2O2Se) exhibits exceptional properties such as thickness-dependent bandgap, superior electron mobility, compatibility with various materials, and stability under ambient conditions. The zipper-type two-dimensional Bi2O2Se (Z-Bi2O2Se) is a newly proposed structure based on theoretical studies of material surface dissociation mechanisms. However, current understanding of this structure still mainly focuses on fundamental investigations of electronic properties such as band structures. Intrinsic point defects, which are inevitable during material synthesis and operational environments, significantly influence the physical characteristics of materials and ultimately dictate device performance. In this work, we conduct an in-depth exploration of intrinsic point defects in the material. Using first-principles calculations based on density functional theory (DFT) and non-equilibrium Green’s function (NEGF) methods, we systematically investigate the structural, electronic, and optoelectronic properties of vacancies, antisites, and adatom point defects in Z-Bi2O2Se. First, the formation energy calculations under different growth conditions reveal that o'vacancy, Se replaced by O, Se adsorption on “Bi'-Bi'-Se” and “Bi-Bi-Se” hollow sites are relatively easy to form. The density of states (DOS) and formation energy shows that o'vacancy, Se adsorption on “Bi'-Bi'-Se” and “Bi-Bi-Se” hollow sites tend to lose electrons and become positively charged. Their donor levels are located at 0.78 eV, 0.01 eV, and 0.07 eV above the valence band maximum (VBM), but well below the conduction band minimum (CBM), indicating deep-level n-type doping characteristics. Furthermore, devices based on monolayer Z-Bi2O2Se along the parallel (Z//) direction and perpendicular (Z) direction of the “zipper” structure are constructed to investigate the influence of intrinsic point defects on optoelectronic performance. The results show that for pristine materials, the photocurrent of Z-perfect in the visible and ultraviolet regions is two orders of magnitude smaller than that of Z//-perfect, demonstrating significant anisotropy. The introduction of point defects reduces system’s symmetry, leading to a remarkable enhancement of photocurrent in both devices in these spectral regions. Notably, in the Z direction, the point defects induce the photocurrent to increase by three orders of magnitude. However, the photocurrent remains relatively small compared with that in Z// direction, indicating persistent anisotropy. The influence of point defects on the extinction ratio depends on both defect types and photon energy. By selecting specific point defects under irradiation at targeted photon energy, the polarization sensitivity of devices can be effectively improved. These findings provide theoretical guidance for deepening the understanding of the electronic structure and optoelectronic properties of two-dimensional Z-Bi2O2Se.
      Corresponding author: XUE Lin, xuelin@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104168) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 20210302123201, 202303021211027, 202303021211028).
    [1]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nature Nanotech. 12 530Google Scholar

    [2]

    Fu H X, Wu J X, Peng H L, Yan B H 2018 Phys. Rev. B 95 241203Google Scholar

    [3]

    Wang C, Ding G Q, Wu X M, Wei S S, Gao G Y 2018 New J. Phys. 20 123014Google Scholar

    [4]

    Jiang H T, Xu X, Fan C, Dai B B, Qi Z D, Jiang S, Cai M Q, Zhang Q L 2022 Chin. Phys. B 31 048102Google Scholar

    [5]

    Li J, Wang Z X, Wen Y, Chu J, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [6]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [7]

    Liu B, Zhou H 2021 Chin. Phys. B 30 106803Google Scholar

    [8]

    Ding X, Li M L, Chen P, et al. 2022 Matter 5 4274Google Scholar

    [9]

    Tippireddy S, Prem Kumar D S, Das S, Mallik R C 2021 ACS Appl. Energy Mater. 4 2022Google Scholar

    [10]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano. Lett. 17 3021Google Scholar

    [11]

    Liang Y, Chen Y J, Sun Y W, et al. 2019 Adv. Mater. 31 1901964Google Scholar

    [12]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano. Lett. 19 197Google Scholar

    [13]

    Song Y K, Li Z J, Li H, et al. 2020 Nanotechnology 31 165704Google Scholar

    [14]

    Wang H, Zhang Z K, Luo H J, Zhang S Q, Pan W W, Liu J L, Ren Y L, Lei W 2024 Adv. Optical Mater. 12 2401404Google Scholar

    [15]

    Chen G X, Wu J, Wang B, Li J, Qi X 2020 Appl. Phys. A 126 579Google Scholar

    [16]

    Chen G X, Zhou Y, Zhang G B, Li J, Qi X 2021 Ceram. Int. 47 25255Google Scholar

    [17]

    李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰 2020 物理学报 69 248502Google Scholar

    Li D Y, Han X, Xu G Y, Liu X, Zhao X J, Li G W, Hao H Y, Dong J J, Liu H, Xing J 2020 Acta Phys. Sin. 69 248502Google Scholar

    [18]

    Khan U, Luo Y T, Tang L, Teng C J, Liu J M, Liu B L, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [19]

    Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [20]

    Tang H, Shi B W, Wang Y Y, Yang C, Liu S Q, Li Y, Quhe R G, Lu J 2021 Phys. Rev. Appl. 15 064037Google Scholar

    [21]

    Pang Z Q, Li T 2021 J. Mech. Phys. Solids 157 104626Google Scholar

    [22]

    Li J Q, Cheng C, Duan M Y 2023 Appl. Surf. Sci. 618 156541Google Scholar

    [23]

    Wei Q L, Li R P, Lin C Q, Han A, Nie A M, Li Y R, Li L J, Cheng Y C, Huang W 2019 ACS Nano. 13 13439Google Scholar

    [24]

    Ge Z C, Zhao W, Yuan S F, Gao Z X, Hao C L, Ma H, Ren H, Guo W Y 2023 Appl. Surf. Sci. 611 155528Google Scholar

    [25]

    Lu S C, Li Y L, Zhao X 2023 Phys. Chem. Chem. Phys. 25 19167Google Scholar

    [26]

    Hossain M T, Jena T, Debnath S, Giri P K 2023 J. Mater. Chem. C 11 6670Google Scholar

    [27]

    Li H L, Xu X T, Zhang Y, Gillen R, Shi L P, Robertson J 2018 Sci. Rep. 8 10920Google Scholar

    [28]

    Wei Q L, Lin C Q, Li Y F, Zhang X Y, Zhang Q Y, Shen Q, Cheng Y C, Huang W 2018 J. Appl. Phys. 124 055701Google Scholar

    [29]

    Wu Z, Wang Y, Liu G, Yang X, Wei T, Zhang H, Zhou J, Zhu J 2021 Mater. Today 21 100810Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [36]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [37]

    Freysoldt C, Neugebauer J 2018 Phys. Rev. B 97 205425Google Scholar

    [38]

    Freysoldt C, Neugebauer J, Van de Walle C G 2009 Phys. Rev. Lett. 102 016402Google Scholar

    [39]

    Xue L, Sun L Z, Hao G L, Zhou P, He C Y, Huang Z Y, Zhong J X 2014 RSC Adv. 4 10499Google Scholar

    [40]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [41]

    Fu Z T, Yan P L, Li J, Zhang S F, He C Y, Ouyang T, Zhang C X, Tang C, Zhong J X 2022 Nanoscale 14 11316Google Scholar

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [43]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [44]

    Chen J Z, Hu Y B, Guo H 2012 Phys. Rev. B 85 155441Google Scholar

    [45]

    Chu F H, Chen M Y, Wang Y, Xie Y Q, Liu B Y, Yang Y H, An X T, Zhang Y Z 2018 J. Mater. Chem. C 6 2509Google Scholar

    [46]

    Xie Y Q, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202Google Scholar

    [47]

    Xu Z H, Luo B, Chen M Y, Xie W Z, Hu Y B, Xiao X B 2021 Appl. Surf. Sci. 548 148751Google Scholar

    [48]

    Belinicher V I 1978 Phys. Lett. A 66 213Google Scholar

    [49]

    Zhang L W, Yang Y Q, Chen J, Zhang L 2023 Front. Phys. 18 62301Google Scholar

    [50]

    Luo Y Z, Xie Y Q, Zhao J, Hu Y B, Ye X, Ke S H 2021 Phys. Rev. Mater. 5 054004Google Scholar

    [51]

    Zhao J, Hu Y B, Xie Y Q, Zhang L, Wang Y 2020 Phys. Rev. Appl. 14 064003Google Scholar

    [52]

    Sun X X, Yin S Q, Wei D, Li Y, Ma Y Q, Dai X Q 2023 Appl. Surf. Sci. 610 155401Google Scholar

  • 图 1  (a)块体 Bi2O2Se 的单胞结构; (b)单层 Z-Bi2O2Se 的侧视图及俯视图; (c)单层 Z-Bi2O2Se 的电子能带结构(蓝色为PBE方法); (d) Bi2O2Se 生长的化学势范围(黄色区域)

    Figure 1.  (a) Unit cell structure of bulk Bi2O2Se; (b) the side and top views of monolayer Z-Bi2O2Se; (c) the electronic energy bands of the monolayer Z-Bi2O2Se (bule represents PBE); (d) the chemical potentials range for the growth of Bi2O2Se (the yellow part).

    图 2  (a)在不同生长环境P1—P5时, 单层 Z-Bi2O2Se 中点缺陷的形成能; (b)单层 Z-Bi2O2Se 中点缺陷OSe, $\rm V_{O'}$, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的结构图

    Figure 2.  (a) Formation energies of the point defects in monolayer Z-Bi2O2Se under different growth environments P1–P5; (b) the structures of the point defects OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $ and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ in monolayer Z-Bi2O2Se.

    图 3  (a) Z-Bi2O2Se 完整体系与含 (b) OSe, (c) $\rm V_{O'} $, (d) $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $, (e) $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ 点缺陷体系总态密度和投影态密度图, 插图为杂质态部分原子投影态密度

    Figure 3.  The TDOS and PDOS of (a) the perfect Z-Bi2O2Se and (b) OSe, (c) $\rm V_{O'} $, (d) $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}}$, (e) $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ doped systems, and the insets are the enlarge views of the impurity states.

    图 4  不同化学势条件(P1, P2, P3, P4, P5)下, 点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的形成能随费米能级的变化(将VBM处设置为零点, 线的斜率表示缺陷在该费米能级处的电荷态)

    Figure 4.  Formation energies of point defects (OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $) in Bi2O2Se are as a function of the Fermi level under different chemical potential conditions (P1–P5). For all cases, the VBM are set for zero. The slope of the lines gives the charge state at the Fermi level.

    图 5  线偏振光照射下(a)单层 Z//-Bi2O2Se和(b)单层 Z-Bi2O2Se 光电探测器结构示意图

    Figure 5.  Schematic structures of (a) monolayer Z//-Bi2O2Se and (b) monolayer Z-Bi2O2Se photodetectors under the linearly polarized light.

    图 6  基于单层 Z//-Bi2O2Se和 Z-Bi2O2Se 完整结构和含点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的器件在θ = 0° 和 θ = 90° 线偏振光照射下的光电流(插图为低光子能量区域放大图)

    Figure 6.  Photocurrents functions of the devices based on perfect and OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $, $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $doped monolayer Z//-Bi2O2Se and Z-Bi2O2Se under θ = 0° and θ = 90° linearly polarized light (the insets are the enlarged views of the low-photo-energy region).

    图 7  单层 Z//-Bi2O2Se和 Z-Bi2O2Se 完整结构和含点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $器件在不同光子能量下的消光比

    Figure 7.  Extinction ratios of devices based on perfect and OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $ and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ doped monolayer Z//-Bi2O2Se and Z-Bi2O2Se at different photon energies.

    表 1  图1(d)中5个临界点 P1—P5 对应的O, Se, Bi的化学势$ {\mu _\text{O}} $, $ {\mu _\text{Se}} $, $ {\mu _{{\text{Bi}}}} $(单位: eV)

    Table 1.  Chemical potentials of O, Se and Bi ($ {\mu _\text{O}} $, $ {\mu _\text{Se}} $, $ {\mu _{{\text{Bi}}}} $) corresponding to the five critical points P1–P5 in Fig. 1(d) (unit: eV).

    P1 P2 P3 P4 P5
    $ {\mu _\text{O}} $ –2.07 –2.16 –1.51 –1.44 –1.44
    $ {\mu _\text{Se}} $ –0.82 –0.64 0.00 0.00 –0.19
    $ {\mu _{{\text{Bi}}}} $ 0.00 0.00 –0.96 –1.04 –0.94
    DownLoad: CSV
  • [1]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nature Nanotech. 12 530Google Scholar

    [2]

    Fu H X, Wu J X, Peng H L, Yan B H 2018 Phys. Rev. B 95 241203Google Scholar

    [3]

    Wang C, Ding G Q, Wu X M, Wei S S, Gao G Y 2018 New J. Phys. 20 123014Google Scholar

    [4]

    Jiang H T, Xu X, Fan C, Dai B B, Qi Z D, Jiang S, Cai M Q, Zhang Q L 2022 Chin. Phys. B 31 048102Google Scholar

    [5]

    Li J, Wang Z X, Wen Y, Chu J, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [6]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [7]

    Liu B, Zhou H 2021 Chin. Phys. B 30 106803Google Scholar

    [8]

    Ding X, Li M L, Chen P, et al. 2022 Matter 5 4274Google Scholar

    [9]

    Tippireddy S, Prem Kumar D S, Das S, Mallik R C 2021 ACS Appl. Energy Mater. 4 2022Google Scholar

    [10]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano. Lett. 17 3021Google Scholar

    [11]

    Liang Y, Chen Y J, Sun Y W, et al. 2019 Adv. Mater. 31 1901964Google Scholar

    [12]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano. Lett. 19 197Google Scholar

    [13]

    Song Y K, Li Z J, Li H, et al. 2020 Nanotechnology 31 165704Google Scholar

    [14]

    Wang H, Zhang Z K, Luo H J, Zhang S Q, Pan W W, Liu J L, Ren Y L, Lei W 2024 Adv. Optical Mater. 12 2401404Google Scholar

    [15]

    Chen G X, Wu J, Wang B, Li J, Qi X 2020 Appl. Phys. A 126 579Google Scholar

    [16]

    Chen G X, Zhou Y, Zhang G B, Li J, Qi X 2021 Ceram. Int. 47 25255Google Scholar

    [17]

    李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰 2020 物理学报 69 248502Google Scholar

    Li D Y, Han X, Xu G Y, Liu X, Zhao X J, Li G W, Hao H Y, Dong J J, Liu H, Xing J 2020 Acta Phys. Sin. 69 248502Google Scholar

    [18]

    Khan U, Luo Y T, Tang L, Teng C J, Liu J M, Liu B L, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [19]

    Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [20]

    Tang H, Shi B W, Wang Y Y, Yang C, Liu S Q, Li Y, Quhe R G, Lu J 2021 Phys. Rev. Appl. 15 064037Google Scholar

    [21]

    Pang Z Q, Li T 2021 J. Mech. Phys. Solids 157 104626Google Scholar

    [22]

    Li J Q, Cheng C, Duan M Y 2023 Appl. Surf. Sci. 618 156541Google Scholar

    [23]

    Wei Q L, Li R P, Lin C Q, Han A, Nie A M, Li Y R, Li L J, Cheng Y C, Huang W 2019 ACS Nano. 13 13439Google Scholar

    [24]

    Ge Z C, Zhao W, Yuan S F, Gao Z X, Hao C L, Ma H, Ren H, Guo W Y 2023 Appl. Surf. Sci. 611 155528Google Scholar

    [25]

    Lu S C, Li Y L, Zhao X 2023 Phys. Chem. Chem. Phys. 25 19167Google Scholar

    [26]

    Hossain M T, Jena T, Debnath S, Giri P K 2023 J. Mater. Chem. C 11 6670Google Scholar

    [27]

    Li H L, Xu X T, Zhang Y, Gillen R, Shi L P, Robertson J 2018 Sci. Rep. 8 10920Google Scholar

    [28]

    Wei Q L, Lin C Q, Li Y F, Zhang X Y, Zhang Q Y, Shen Q, Cheng Y C, Huang W 2018 J. Appl. Phys. 124 055701Google Scholar

    [29]

    Wu Z, Wang Y, Liu G, Yang X, Wei T, Zhang H, Zhou J, Zhu J 2021 Mater. Today 21 100810Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [36]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [37]

    Freysoldt C, Neugebauer J 2018 Phys. Rev. B 97 205425Google Scholar

    [38]

    Freysoldt C, Neugebauer J, Van de Walle C G 2009 Phys. Rev. Lett. 102 016402Google Scholar

    [39]

    Xue L, Sun L Z, Hao G L, Zhou P, He C Y, Huang Z Y, Zhong J X 2014 RSC Adv. 4 10499Google Scholar

    [40]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [41]

    Fu Z T, Yan P L, Li J, Zhang S F, He C Y, Ouyang T, Zhang C X, Tang C, Zhong J X 2022 Nanoscale 14 11316Google Scholar

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [43]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [44]

    Chen J Z, Hu Y B, Guo H 2012 Phys. Rev. B 85 155441Google Scholar

    [45]

    Chu F H, Chen M Y, Wang Y, Xie Y Q, Liu B Y, Yang Y H, An X T, Zhang Y Z 2018 J. Mater. Chem. C 6 2509Google Scholar

    [46]

    Xie Y Q, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202Google Scholar

    [47]

    Xu Z H, Luo B, Chen M Y, Xie W Z, Hu Y B, Xiao X B 2021 Appl. Surf. Sci. 548 148751Google Scholar

    [48]

    Belinicher V I 1978 Phys. Lett. A 66 213Google Scholar

    [49]

    Zhang L W, Yang Y Q, Chen J, Zhang L 2023 Front. Phys. 18 62301Google Scholar

    [50]

    Luo Y Z, Xie Y Q, Zhao J, Hu Y B, Ye X, Ke S H 2021 Phys. Rev. Mater. 5 054004Google Scholar

    [51]

    Zhao J, Hu Y B, Xie Y Q, Zhang L, Wang Y 2020 Phys. Rev. Appl. 14 064003Google Scholar

    [52]

    Sun X X, Yin S Q, Wei D, Li Y, Ma Y Q, Dai X Q 2023 Appl. Surf. Sci. 610 155401Google Scholar

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [3] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [6] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [7] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [8] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [10] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [11] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [12] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [13] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [15] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [16] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [20] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
Metrics
  • Abstract views:  311
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2024
  • Accepted Date:  13 March 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回