Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of uniaxial pre-strain on H adsorption and diffusion on C-doped Fe (110) surface

CAI Yiquan YIN Yihui LI Jicheng

Citation:

Effect of uniaxial pre-strain on H adsorption and diffusion on C-doped Fe (110) surface

CAI Yiquan, YIN Yihui, LI Jicheng
cstr: 32037.14.aps.74.20250107
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to further investigate and improve the mechanism of the interaction between pre-strain/pre-stress and hydrogen-adsorbed steel (Fe-C alloy) surface at the microstructural level, the first-principles calculations method is used to study the effects of uniaxial pre-strain on hydrogen adsorption and diffusion on C-doped Fe(110) surface. The influence of pre-strain on hydrogen adsorption and permeation is investigated from three aspects: surface atomic spatial configuration, binding energy (Eb), and electronic structure. The diffusion energy barriers for hydrogen permeation are calculated in both doped and undoped C atoms. The results demonstrate that doped C atoms induce octahedral lattice distortion in Fe crystals in different directions, creating “distortion” on the Fe(110) surface. Variations in distortion degree (DΔ) at different sites and their distances from C atom lead to inconsistent trends in adsorption configurations (H adsorption height d and unit surface area SΔ) and binding energy (Eb) under pre-strain. For adsorption configurations, d is coupled by ε and C atom effects: at the TFpure site (non-C-doped site ), d decreases as SΔ increases; under compression (ε decreases from 0% to –5%) at TF (C-doped site with C atom directly beneath the site), TFS (C-doped site located closer to the maximally distorted atom Fe135) and TFL sites (C-doped site located farther from the maximally distorted atom Fe135), d positively correlates with DΔ, while under tension (ε increases from 0% to 5%), d negatively correlates with SΔ. As ε increases from –5% to 5%, Eb peaks at TFpure then declines, whereas Eb at TF decreases initially before rising, and Eb at TFS/TFL monotonically increases. The analysis hows that Eb at TFS/TFL positively is correlated with the standard deviation (Sα) of the three internal angles in the triangular unit. The trend of diffusion energy barrier (E) is opposite to that of Eb. When H is adsorbed at C-doped sites, the adsorption configuration and binding energy calculations indicate that H tends to diffuse inward more readily. However, electronic structure analysis reveals repulsion between C and H atoms, accompanied by increased diffusion barriers compared with the scenarios in the undoped cases, causing H atoms to accumulate around C atoms rather than penetrate the bulk phase, thereby leading hydrogen atoms to embrittle. The calculations of adsorption configuration, binding energy, and diffusion barrier indicate that at doped sites (TFS site), increasing tensile strain can contribute to H diffusion into the steel microstructure, whereas compressive strain hinders it. This explains the engineering phenomenon where “higher carbon content exacerbates hydrogen embrittlement tendency under equivalent stress” on an atomic scale. This work elucidates the mechanism of H adsorption on pre-strained Fe-C alloy surfaces from an electronic structure perspective, providing theoretical ideas for studying hydrogen embrittlement.
      Corresponding author: YIN Yihui, yinyh@caep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072333).
    [1]

    Teng Y, Wang Z D, Li Y, Ma Q, Hui Q, Li S B 2019 Csee J. Power Energy 5 266Google Scholar

    [2]

    张博, 万宏, 徐可忠, 李雪静, 魏寿祥 2017 国际石油经济 25 65Google Scholar

    Zhang B, Wan H, Xu K Z, Li X J, Wei S X 2017 Int. Pet. Econ. 25 65Google Scholar

    [3]

    Dodds P E, Mcdowall W 2013 Energy Policy 60 305Google Scholar

    [4]

    Buzzard R W, Cleaves H E 1951 Hydrogen Embrittlement of Steel-Review of Literature (United States: National Bureau of Standards) p36

    [5]

    刘松, 王寅岗 2015 中国有色金属学 25 3100Google Scholar

    Liu S, Wang M G 2015 Trans. Nonferrous Met. Soc. China 25 3100Google Scholar

    [6]

    胡世威, 梁浩, 徐兵 2019 航空学报 40 278Google Scholar

    Hu S W, Liang H, Xu B 2019 Acta Aeronaut. Astronaut. Sin. 40 278Google Scholar

    [7]

    Cheng A K, Chen N Z 2017 Int. J. Fatigue 96 152Google Scholar

    [8]

    Cheng A K, Chen N Z 2017 Ocean Eng. 142 10Google Scholar

    [9]

    Meda U S, Bhat N, Pandey A, Subramanya K N, Lourdu Antony Raj M A 2023 Int. J. Hydrogen Energ. 48 17894Google Scholar

    [10]

    Nanninga N, Grochowsi J, Heldt L, Rundman K 2009 Corros. Sci. 52 1237Google Scholar

    [11]

    Nanninga N E, Levy Y S, Drexler E S, Condon R T, Stevenson A E, Slifka A J 2012 Corros. Sci. 59 1Google Scholar

    [12]

    Zhou C S, Ye B G, Song Y Y, Cui T C, Xu P, Zhang L 2019 Int. J. Hydrogen Energ. 44 22547Google Scholar

    [13]

    Toofan J, Watson P R 1998 Surf. Sci. 401 162Google Scholar

    [14]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414Google Scholar

    [15]

    Lord M A, Evans E J, Barnett J C, Allen W M, Barron R A, Wilks P S 2017 J. Phys. Condens. Mat. 29 384001Google Scholar

    [16]

    李守英, 胡瑞松, 赵卫民, 李贝贝 王勇 2020 表面技术 49 15Google Scholar

    Li S Y, Hu R S, Zhao W M, Li B B, Wang Y 2020 Surf. Technol. 49 15Google Scholar

    [17]

    胡庭赫, 李直昊, 张千帆 2024 物理学报 73 067101Google Scholar

    Hu T H, Li Z H, Zhang Q F 2024 Acta Phys. Sin. 73 067101Google Scholar

    [18]

    赵巍, 汪家道, 刘峰斌, 陈大融 2009 物理学报 58 3352Google Scholar

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352Google Scholar

    [19]

    Yoshida K 1980 Jpn. J. Appl. Phys. 19 1873Google Scholar

    [20]

    唐秀艳 2016 硕士学位论文(青岛: 中国石油大学(华东))

    Tang X Y 2016 M. S. Thesis (Qingdao: China University of Petroleum (East China)

    [21]

    Savoie J, Ray R K, Butron-Guillen M P, Jonas J J 1994 Acta Metall. Mater. 42 2511Google Scholar

    [22]

    Cremaschi P, Yang H, Whitten J L 1995 Surf. Sci. 330 255Google Scholar

    [23]

    Bozso F, Ertl G, Grunze M, Weiss M 1977 Appl. of Surf. Sci. 1 103Google Scholar

    [24]

    Baró A M, Erley W 1981 Surf. Sci. 112 L759Google Scholar

    [25]

    Xie W W, Peng L, Peng D L, Gu F L, Liu J 2014 Appl. Surf. Sci. 296 47Google Scholar

    [26]

    Eder M, Terakura K, Hafner J 2001 Phys. Rev. B 64 115426Google Scholar

    [27]

    Raeker J T, DePristo E A 1990 Surf. Sci. 235 84Google Scholar

    [28]

    Chohan K U, Jimenez M E, Koehler P K S 2016 Appl. Surf. Sci. 387 385Google Scholar

    [29]

    Xu L, Kirvassilis D, Bai Y, Mavrikakis M 2018 Surf. Sci. 667 54Google Scholar

    [30]

    Richard T, Zihan X, Balachandran R, Donald W, Wenhao S, Kristin A P, Ping O S 2016 Sci. Data 3 160080Google Scholar

    [31]

    Sheikhzadeh A, Liu J, Zeng Y M, Zhang H 2024 Int. J. Hydrogen Energ. 81 727Google Scholar

    [32]

    李守英, 赵卫民, 乔建华, 王勇 2019 物理学报 68 217103Google Scholar

    Li S Y, Zhao W M, Qiao J H, Wang Y 2019 Acta Phys. Sin. 68 217103Google Scholar

    [33]

    Li S Y, Zhao W M, Wang Y 2020 Chin. J. Struc. Chem. 39 443Google Scholar

    [34]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012 Surf. Sci. 606 733Google Scholar

    [39]

    Jiang D E, Carter A E 2005 Phys. Rev. B 71 045402Google Scholar

    [40]

    Dong N, Zhang C, Liu H, Li J, Wu X L 2014 Comp. Mater. Sci. 90 137Google Scholar

    [41]

    Stibor A, Kresse G, Eichler A, Hafner J 2002 Surf. Sci. 507 99Google Scholar

    [42]

    Spencer J S M, Hung A, Snook K I, Yarovsky I 2002 Surf. Sci. 515 L464Google Scholar

    [43]

    Arya A, Carter A E 2003 J. Chem. Phys. 118 8982Google Scholar

    [44]

    Shih H D, Jona F, Bardi U, Marcus P M 1980 J. Phys. C: Solid State Phys. 13 3801Google Scholar

    [45]

    Xu C, O’Connor D J 1991 Nucl. Instrum. Meth. B 53 315Google Scholar

    [46]

    Shen X J, Chen J, Sun Y M, Liang T S 2016 Surf. Sci. 654 48Google Scholar

    [47]

    Jiang D E, Carter A E 2003 Surf. Sci. 547 85Google Scholar

    [48]

    杨勇, 赫全锋 2021 金属学报 57 385Google Scholar

    Yang Y, He Q F 2021 Acta Metall. Sin. 57 385Google Scholar

    [49]

    Li X J, Lin S Y, Zhou W Z, Ma Y, Jiang N B, Liu Z 2024 Int. J. Hydrogen Energ. 51 894Google Scholar

    [50]

    He Y, Li Y J, Chen C F, Yu H B 2017 Int. J. Hydrogen Energ. 42 27438Google Scholar

    [51]

    Henkelman G, Uberuaga P B, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [52]

    Jiang D E, Carter A E 2004 Phys. Rev. B 70 064102.Google Scholar

    [53]

    Zhu L X, Luo J H, Zheng S L, Yang S J, Hu J, Chen Z 2023 Int. J. Hydrogen Energ. 48 17703Google Scholar

    [54]

    刘飞, 文志鹏 2019 物理学报 68 137101Google Scholar

    Liu F, Wen Z P 2019 Acta Phys. Sin. 68 137101Google Scholar

    [55]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [56]

    Wang C M, Zhang L J, Ma Y J, Zhang S Z, Yang R, Hu Q M 2023 Appl. Surf. Sci. 621 156871Google Scholar

    [57]

    张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨 2023 物理学报 72 168801Google Scholar

    Zhang J L, Wang Z M, Wang D H, Hu C H, Wang F, Gan W J, Lin Z K 2023 Acta Phys. Sin. 72 168801Google Scholar

  • 图 1  Fe(110)表面原子排列和吸附位点, H吸附位点分别为长桥位点(LB)、短桥位点(SB)、准三重位点(TF)和顶部位点(OP), 最近的两个Fe原子之间的距离为2.48 Å; LB, SB, TF位点到OT位点的侧向距离分别为2.02, 1.24, 1.52 Å

    Figure 1.  Atom arrangement and symmetry sites on Fe(110). The H adsorption sites are long bridge site (LB), short bridge site (SB), quasi triple site (TF) and top site (OP), respectively; the distance between the nearest two Fe atoms is 2.48 Å, the lateral distances from LB, SB, TF sites to OT sites are 2.02, 1.24, 1.52 Å, respectively.

    图 2  晶体模型 (a) 3×3×4扩胞; (b)切(110)面; (c)纯铁晶体模型; (d) 3×3×4扩胞; (e)切(110)面; (f) 中碳钢晶体模型; 绿色面为(110)面, 粉色面为切割面, 以此为界将晶体模型切割, 后续计算将在切割面上添加真空层

    Figure 2.  Crystal model: (a) 3 × 3 × 4 cell expansion; (b) cut (110) face; (c) pure iron crystal model; (d) 3 × 3 × 4 cell expansion; (e) cut (110) face; (f) crystal model of medium carbon steel. The green surface is (110) side, the pink surface is the cutting surface, which is used as the boundary to cut the crystal model, subsequent calculations will add a vacuum layer on the cutting surface.

    图 3  基底模型 (a)未掺杂模型; (b) 掺杂模型; 掺杂时, 第135号Fe原子(Fe135)为表面上最大畸变原子

    Figure 3.  Substrate model: (a) None-doped model; (b) doped model. When doped, the 135th Fe atom (Fe135) is the largest distorted atom on the surface.

    图 4  掺杂吸附模型, 图中蓝色原子表示体心原子; 掺杂时, 整个表面都发生畸变, 以离C原子最近的吸附位点为研究对象: OP位点位于Fe47顶部, COP位点位于Fe135顶部, SB位点位于Fe47和Fe135之间, LB位点位于Fe47和Fe50之间, TF位点位于Fe47, Fe50, Fe135组成的三角形区域

    Figure 4.  H-adsorption model (C-doped). Blue atoms represent body centered atoms; when doped, the whole surface is distorted, the adsorption site nearest to the C atom is taken as the research object: OP site is at the top of Fe47, COP site is at the top of Fe135, SB site is between Fe47 and Fe135, LB site is between Fe47 and Fe50, TF site is in the triangular region composed of Fe47, Fe50 and Fe135.

    图 5  表面Fe原子空间位置分布情况 (a) ε = –5%; (b) ε = –2.5%; (c) ε = 0%; (d) ε = 2.5%; (e) ε = 5%

    Figure 5.  Spatial distribution of surface Fe atoms: (a) ε = –5%; (b) ε = –2.5%; (c) ε = 0%; (d) ε = 2.5%; (e) ε = 5%.

    图 6  ε = 0%时OP (a)和COP (b)位点差分电荷差分电荷密度空间分布(黄色区域代表得电子, 表示高电子密度; 蓝色区域代表失电子, 表示低电子密度)

    Figure 6.  Differential charge space distribution of OP (a) and COP (b) at ε = 0%. The yellow area represents electrons, indicating high electron density, and the blue area represents electron loss, indicating low electron density.

    图 7  不稳定点吸附结过示意图(掺杂C), 虚圆代表氢原子起始位点, 位于OP位点的H原子在应变为–5%和5%的作用下迁移至TF1位点, 在–2.5%, 0%, 2.5%的情况下迁移至TF2位点; 位于SB位点的H原子迁移至TFS位点; 位于LB位点的氢原子迁移至TFL位点

    Figure 7.  Adsorption results of unstable site (C-doped). The dotted circles represent the starting site of hydrogen atom, the H atom at the OP site migrates to the TF1 site at the strain of –5% and 5%, and to the TF2 site at the strain of –2.5%, 0%, 2.5%, the H atom located at the SB site migrates to the TFS site, H atom at LB site migrates to TFL site.

    图 8  H吸附的几何参数 (a) aob平面; (b) aoc平面

    Figure 8.  Geometric parameters for H adsorption: (a) aob plane; (b) aoc plane.

    图 9  H原子吸附结果 (a) TFpure (未掺杂); (b) TFS (掺杂C原子); (c) TFL (掺杂C原子); (d) TF (掺杂C原子)

    Figure 9.  Adsorption results of H atom: (a) TFpure (none-doped); (b) TFS (C-doped); (c) TFL (C-doped); (d) TF (C-doped).

    图 10  结合能分析 (a)预应变-结合能-标准差; (b) 标准差-结合能

    Figure 10.  Analysis of bonding energy: (a) Strain-binding energy-standard deviation; (b) standard deviation- binding energy.

    图 11  扩散分析 (a)吸附结构与结合能; (b)态密度; (c)扩散路径; (d)扩散能垒

    Figure 11.  Diffusion analysis: (a) Adsorption structure and binding energy; (b) density of state; (c) diffusion path; (d) diffusion activation energy.

    图 12  TFS位点态密度和Bader电荷, 其中右图黄色字体为H原子上的电荷, 蓝色字体为3个配位Fe原子的电荷, 虚线框内为H, Fe原子得失总电荷以及它们的差值(红色字体)

    Figure 12.  State density and Bader charge of TFS site. The charge on the H atom is shown in the right panel by the yellow font, the charge on the three coordinated Fe atoms by the blue font, and the total charge gain or loss of the H and Fe atoms as well as their difference (shown in red type) is included in the dashed box.

    图 13  TFS位点电荷密度

    Figure 13.  Charge density of TFs site.

    表 1  基底表面畸变处参数

    Table 1.  Parameters of the substrate model at the distortion.

    应变ε/% 未掺杂 掺杂
    dSB dLB dz lFe47/50-O lFe135-O dSB dLB dz lFe47/50-C lFe135-C
    –5.0 2.426 2.665 2.044 1.962 1.438 2.731 2.677 2.482 1.915 1.811
    –2.5 2.426 2.735 2.016 1.973 1.421 2.761 2.762 2.447 1.935 1.802
    0.0 2.423 2.805 1.994 1.985 1.404 2.773 2.826 2.418 1.952 1.789
    2.5 2.434 2.875 1.978 2.002 1.393 2.772 2.884 2.421 1.963 1.789
    5.0 2.442 2.946 1.952 2.018 1.379 2.806 2.958 2.446 1.976 1.794
    注: dSB为短桥距离, 为Fe47和Fe135之间的距离; dLB为长桥距离, 为Fe47和Fe50之间的距离; dz为最大畸变的Fe原子(Fe135)到次表面Fe原子之间的平均垂直距离, lFe-C为C原子与配位Fe原子之间的键长; lFe-O为Fe原子到八面体中心之间的距离; 以上长度单位均为Å.
    DownLoad: CSV

    表 2  结合能Eb (单位为eV)

    Table 2.  Binding energy Eb (Unit: eV).

    ε/%未掺杂掺杂
    OPCOPSBLBTFOPCOPSBLBTF
    –5–2.419–2.421–2.911–2.901–3.040–3.105*–2.438–2.993*–3.002*–2.736
    –2.5–2.360–2.358–2.850–2.853–2.979–3.083*–2.436–2.985*–2.962*–2.961
    0–2.360–2.361–2.829–2.893–2.969–3.059*–2.419–2.975*–2.941*–2.671
    2.5–2.369–2.367–2.841–2.937–2.990–3.051*–2.389–2.949*–2.921*–2.656
    5–2.387–2.388–2.849–1.411–3.002–3.120*–2.290–2.847*–2.840*–2.560
    注: *表示位点不稳定, 最终吸附位点为附近的准三重位点.
    DownLoad: CSV

    表 3  H吸附后单元表面积S∆L

    Table 3.  Unit surface area of H-adsorption S∆L.

    ε/%S∆L2
    TFpureTFSTFLTF
    –52.7152.9092.7512.936
    –2.52.7592.9542.7972.998
    02.7462.9882.833.03
    2.52.8123.0482.8293.047
    52.8563.0692.8583.061
    DownLoad: CSV
  • [1]

    Teng Y, Wang Z D, Li Y, Ma Q, Hui Q, Li S B 2019 Csee J. Power Energy 5 266Google Scholar

    [2]

    张博, 万宏, 徐可忠, 李雪静, 魏寿祥 2017 国际石油经济 25 65Google Scholar

    Zhang B, Wan H, Xu K Z, Li X J, Wei S X 2017 Int. Pet. Econ. 25 65Google Scholar

    [3]

    Dodds P E, Mcdowall W 2013 Energy Policy 60 305Google Scholar

    [4]

    Buzzard R W, Cleaves H E 1951 Hydrogen Embrittlement of Steel-Review of Literature (United States: National Bureau of Standards) p36

    [5]

    刘松, 王寅岗 2015 中国有色金属学 25 3100Google Scholar

    Liu S, Wang M G 2015 Trans. Nonferrous Met. Soc. China 25 3100Google Scholar

    [6]

    胡世威, 梁浩, 徐兵 2019 航空学报 40 278Google Scholar

    Hu S W, Liang H, Xu B 2019 Acta Aeronaut. Astronaut. Sin. 40 278Google Scholar

    [7]

    Cheng A K, Chen N Z 2017 Int. J. Fatigue 96 152Google Scholar

    [8]

    Cheng A K, Chen N Z 2017 Ocean Eng. 142 10Google Scholar

    [9]

    Meda U S, Bhat N, Pandey A, Subramanya K N, Lourdu Antony Raj M A 2023 Int. J. Hydrogen Energ. 48 17894Google Scholar

    [10]

    Nanninga N, Grochowsi J, Heldt L, Rundman K 2009 Corros. Sci. 52 1237Google Scholar

    [11]

    Nanninga N E, Levy Y S, Drexler E S, Condon R T, Stevenson A E, Slifka A J 2012 Corros. Sci. 59 1Google Scholar

    [12]

    Zhou C S, Ye B G, Song Y Y, Cui T C, Xu P, Zhang L 2019 Int. J. Hydrogen Energ. 44 22547Google Scholar

    [13]

    Toofan J, Watson P R 1998 Surf. Sci. 401 162Google Scholar

    [14]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414Google Scholar

    [15]

    Lord M A, Evans E J, Barnett J C, Allen W M, Barron R A, Wilks P S 2017 J. Phys. Condens. Mat. 29 384001Google Scholar

    [16]

    李守英, 胡瑞松, 赵卫民, 李贝贝 王勇 2020 表面技术 49 15Google Scholar

    Li S Y, Hu R S, Zhao W M, Li B B, Wang Y 2020 Surf. Technol. 49 15Google Scholar

    [17]

    胡庭赫, 李直昊, 张千帆 2024 物理学报 73 067101Google Scholar

    Hu T H, Li Z H, Zhang Q F 2024 Acta Phys. Sin. 73 067101Google Scholar

    [18]

    赵巍, 汪家道, 刘峰斌, 陈大融 2009 物理学报 58 3352Google Scholar

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352Google Scholar

    [19]

    Yoshida K 1980 Jpn. J. Appl. Phys. 19 1873Google Scholar

    [20]

    唐秀艳 2016 硕士学位论文(青岛: 中国石油大学(华东))

    Tang X Y 2016 M. S. Thesis (Qingdao: China University of Petroleum (East China)

    [21]

    Savoie J, Ray R K, Butron-Guillen M P, Jonas J J 1994 Acta Metall. Mater. 42 2511Google Scholar

    [22]

    Cremaschi P, Yang H, Whitten J L 1995 Surf. Sci. 330 255Google Scholar

    [23]

    Bozso F, Ertl G, Grunze M, Weiss M 1977 Appl. of Surf. Sci. 1 103Google Scholar

    [24]

    Baró A M, Erley W 1981 Surf. Sci. 112 L759Google Scholar

    [25]

    Xie W W, Peng L, Peng D L, Gu F L, Liu J 2014 Appl. Surf. Sci. 296 47Google Scholar

    [26]

    Eder M, Terakura K, Hafner J 2001 Phys. Rev. B 64 115426Google Scholar

    [27]

    Raeker J T, DePristo E A 1990 Surf. Sci. 235 84Google Scholar

    [28]

    Chohan K U, Jimenez M E, Koehler P K S 2016 Appl. Surf. Sci. 387 385Google Scholar

    [29]

    Xu L, Kirvassilis D, Bai Y, Mavrikakis M 2018 Surf. Sci. 667 54Google Scholar

    [30]

    Richard T, Zihan X, Balachandran R, Donald W, Wenhao S, Kristin A P, Ping O S 2016 Sci. Data 3 160080Google Scholar

    [31]

    Sheikhzadeh A, Liu J, Zeng Y M, Zhang H 2024 Int. J. Hydrogen Energ. 81 727Google Scholar

    [32]

    李守英, 赵卫民, 乔建华, 王勇 2019 物理学报 68 217103Google Scholar

    Li S Y, Zhao W M, Qiao J H, Wang Y 2019 Acta Phys. Sin. 68 217103Google Scholar

    [33]

    Li S Y, Zhao W M, Wang Y 2020 Chin. J. Struc. Chem. 39 443Google Scholar

    [34]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J 2012 Surf. Sci. 606 733Google Scholar

    [39]

    Jiang D E, Carter A E 2005 Phys. Rev. B 71 045402Google Scholar

    [40]

    Dong N, Zhang C, Liu H, Li J, Wu X L 2014 Comp. Mater. Sci. 90 137Google Scholar

    [41]

    Stibor A, Kresse G, Eichler A, Hafner J 2002 Surf. Sci. 507 99Google Scholar

    [42]

    Spencer J S M, Hung A, Snook K I, Yarovsky I 2002 Surf. Sci. 515 L464Google Scholar

    [43]

    Arya A, Carter A E 2003 J. Chem. Phys. 118 8982Google Scholar

    [44]

    Shih H D, Jona F, Bardi U, Marcus P M 1980 J. Phys. C: Solid State Phys. 13 3801Google Scholar

    [45]

    Xu C, O’Connor D J 1991 Nucl. Instrum. Meth. B 53 315Google Scholar

    [46]

    Shen X J, Chen J, Sun Y M, Liang T S 2016 Surf. Sci. 654 48Google Scholar

    [47]

    Jiang D E, Carter A E 2003 Surf. Sci. 547 85Google Scholar

    [48]

    杨勇, 赫全锋 2021 金属学报 57 385Google Scholar

    Yang Y, He Q F 2021 Acta Metall. Sin. 57 385Google Scholar

    [49]

    Li X J, Lin S Y, Zhou W Z, Ma Y, Jiang N B, Liu Z 2024 Int. J. Hydrogen Energ. 51 894Google Scholar

    [50]

    He Y, Li Y J, Chen C F, Yu H B 2017 Int. J. Hydrogen Energ. 42 27438Google Scholar

    [51]

    Henkelman G, Uberuaga P B, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [52]

    Jiang D E, Carter A E 2004 Phys. Rev. B 70 064102.Google Scholar

    [53]

    Zhu L X, Luo J H, Zheng S L, Yang S J, Hu J, Chen Z 2023 Int. J. Hydrogen Energ. 48 17703Google Scholar

    [54]

    刘飞, 文志鹏 2019 物理学报 68 137101Google Scholar

    Liu F, Wen Z P 2019 Acta Phys. Sin. 68 137101Google Scholar

    [55]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [56]

    Wang C M, Zhang L J, Ma Y J, Zhang S Z, Yang R, Hu Q M 2023 Appl. Surf. Sci. 621 156871Google Scholar

    [57]

    张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨 2023 物理学报 72 168801Google Scholar

    Zhang J L, Wang Z M, Wang D H, Hu C H, Wang F, Gan W J, Lin Z K 2023 Acta Phys. Sin. 72 168801Google Scholar

  • [1] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] Liu Fei, Wen Zhi-Peng. First principle study of occupancy, bonding characteristics and alloying effect of Zr, Nb, V in bulk α-Fe(C). Acta Physica Sinica, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [4] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [5] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [7] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [8] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] Xiong Hui-Hui, Zhang Hui-Ning. First-principles investigation on partitioning behavior of rare earth elements between α-Fe and Fe3C. Acta Physica Sinica, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [10] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [11] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [12] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [13] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [14] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [15] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] Chen Yu-Hong, Du Rui, Zhang Zhi-Long, Wang Wei-Chao, Zhang Cai-Rong, Kang Long, Luo Yong-Chun. First principles study of H2 molecule adsorption on Li3 N(110) surfaces. Acta Physica Sinica, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [18] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [20] Zhao Wei, Wang Jia-Dao, Liu Feng-Bin, Chen Da-Rong. First principles study of H2O molecule adsorption on Fe(100), Fe(110) and Fe(111) surfaces. Acta Physica Sinica, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
Metrics
  • Abstract views:  239
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2025
  • Accepted Date:  08 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回