Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes

LIAO Liangxin ZHANG Jieyin LIU Fangze YAN Mouhui MING Ming FU Binxiao ZHANG Xinding ZHANG Jianjun

Citation:

High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes

LIAO Liangxin, ZHANG Jieyin, LIU Fangze, YAN Mouhui, MING Ming, FU Binxiao, ZHANG Xinding, ZHANG Jianjun
cstr: 32037.14.aps.74.20250164
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Strained silicon technology employing strain-relaxed SiGe virtual substrates has become pivotal factor in advancing group IV semiconductor electronics, photonic devices, silicon-based quantum computing architectures, and neuromorphic devices. Although existing approaches using Si/SiGe superlattice buffers and compositionally graded SiGe layers can produce high-quality SiGe virtual substrates, defects including threading dislocations and crosshatch patterns still limit further performance enhancement. This study demonstrates a method of fabricating fully elastically relaxed SiGe nanomembranes that effectively suppresses the formation of both threading dislocations and crosshatch patterns. The fabrication process comprises three key steps: 1) epitaxially growing Si/SiGe/Si heterostructures on silicon-on-insulator substrates via molecular beam epitaxy (MBE), 2) fabricating periodic pore arrays by using photolithography and reactive ion etching, and 3) selectively wet etching and subsequently transferring nanomembranes to Si(001) substrates. Subsequently, a Si/SiGe heterostructure is grown on the SiGe nanomembranes via MBE. The full elastic relaxation state of the SiGe nanomembranes and the fully strained state of the Si quantum well in the epitaxial Si/SiGe heterostructures are verified using Raman spectroscopy. Surface root-mean-square roughness value is 0.323 nm for the SiGe nanomembrane transferred to the silicon substrate and 0.118 nm for the epitaxial Si/SiGe heterostructure, which are demonstrated through atomic force microscopy measurements. Through electron channel contrast imaging, it is demonstrated that the Si/SiGe heterostructures grown on SiGe nanomembranes have uniform surface contrast and no detectable threading dislocations. Comparatively, the silicon substrate region exhibits high-density threading dislocations accompanied by stacking faults. Cross-sectional transmission electron microscope analysis shows atomically sharp and defect-free interfaces. This research lays a critical foundation for developing high-mobility two-dimensional electron gas systems and high-performance quantum bits.
      Corresponding author: ZHANG Jieyin, zhangjieyin@sslab.org.cn ; ZHANG Xinding, xdzhang@scnu.edu.cn ; ZHANG Jianjun, jjzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92165207, 62225407, 12304100, 92464206), the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302300), and the Songshan Lake Materials Laboratory China (Grant No. XMYS2023002).
    [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41Google Scholar

    [2]

    Shalf J 2020 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378 20190061Google Scholar

    [3]

    Thompson S E, Parthasarathy S 2006 Mater. Today 9 20Google Scholar

    [4]

    Arienzo M, Iyer S S, Meyerson B S, Patton G L, Stork J M C 1991 Appl. Surf. Sci. 48 377Google Scholar

    [5]

    Azevedo A M D, Lopes T J, Cardoso D D, Monterio S N, Silveira P C R, Figueiredo A B H D S 2024 Obs. Econ. Latinoam. 22 e8370Google Scholar

    [6]

    Cressler J D 1998 IEEE Trans. Microw. Theory Tech. 46 572Google Scholar

    [7]

    Harame D L, Koester S J, Freeman G, Cottrel P, Rim K, Dehlinger G, Ahlgren D, Dunn J S, Greenberg D, Joseph A, Anderson F, Rieh J S, Onge S A S T, Coolbaugh D, Ramachandran V, Cressler J D, Subbanna S 2004 Appl. Surf. Sci. 224 9Google Scholar

    [8]

    Soref R A 1993 Proc. IEEE 81 1687Google Scholar

    [9]

    Wang K L, Cha D, Liu J, Chen C 2007 Proc. IEEE 95 1866Google Scholar

    [10]

    张结印, 高飞, 张建军 2021 物理学报 70 217802Google Scholar

    Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802Google Scholar

    [11]

    Tai C T, Li J Y 2024 Mater. Quantum Technol. 4 012001Google Scholar

    [12]

    Connors E J, Nelson J, Edge L F, Nichol J M 2022 Nat. Commun. 13 940Google Scholar

    [13]

    Bian H, Goh Y Y, Liu Y, Ling H, Xie L, Liu X 2021 Adv. Mater. 33 2006469Google Scholar

    [14]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R, Michel J, Mii Y J, Weir B E 1991 Appl. Phys. Lett. 59 811Google Scholar

    [15]

    Hartmann J M, Gallas B, Zhang J, Harris J J, Joyce B A 1999 J. Appl. Phys. 86 845Google Scholar

    [16]

    Rahman M M, Matada H, Tambo T, Tatsuyama C 2001 Appl. Surf. Sci. 175 6Google Scholar

    [17]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64Google Scholar

    [18]

    耿鑫, 张结印, 卢文龙, 明铭, 刘方泽, 符彬啸, 褚逸昕, 颜谋回, 王保传, 张新定, 郭国平, 张建军 2024 物理学报 73 117302Google Scholar

    Geng X, Zhang J Y, Lu W L, Ming M, Liu F Z, Fu B X, Chu Y X, Yan M H, Wang B C, Zhang X D, Guo G P, Zhang J J 2024 Acta Phys. Sin. 73 117302Google Scholar

    [19]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 MRS Proc. 220 413Google Scholar

    [20]

    Ismail K 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 2776Google Scholar

    [21]

    Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 11 1731Google Scholar

    [22]

    Paskiewicz D M, Tanto B, Savage D E, Lagally M G 2011 ACS Nano 5 5814Google Scholar

    [23]

    Li Y S, Sookchoo P, Cui X, Mohr R, Savage D E, Foote R H, Jacobson R, Sánchez-Pérez J R, Paskiewicz D M, Wu X, Ward D R, Coppersmith S N, Eriksson M A, Lagally M G 2015 ACS Nano 9 4891Google Scholar

    [24]

    Schäffler F 1997 Semicond. Sci. Technol. 12 1515Google Scholar

    [25]

    Schmidt O G, Eberl K 2001 Nature 410 168Google Scholar

    [26]

    Wolf I D 1996 Semicond. Sci. Technol. 11 139Google Scholar

    [27]

    Pezzoli F, Bonera E, Grilli E, Guzzi M, Sanguinetti S, Chrastina D, Isella G, Von Känel H, Wintersberger E, Stangl J, Bauer G 2008 J. Appl. Phys. 103 093521Google Scholar

    [28]

    Nakashima S, Mitani T, Ninomiya M, Matsumoto K 2006 J. Appl. Phys. 99 053512Google Scholar

    [29]

    Wong L H, Wong C C, Liu J P, Sohn D K, Chan L, Hsia L C, Zang H, Ni Z H, Shen Z X 2005 Jpn. J. Appl. Phys. 44 7922Google Scholar

    [30]

    Loup V, Gabette L, Roure M C, Kachtouli R, Jourdan M, Besson P, Petitdidier S 2013 ECS Trans. 58 47Google Scholar

    [31]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuators Phys. 80 179Google Scholar

  • 图 1  SiGe纳米薄膜的制备流程 (a) SOI衬底上外延生长60 nm Si, 80 nm Si0.78Ge0.22和280 nm Si; (b) 利用微纳加工技术制备周期孔洞阵列; (c) 在IPA溶液中将Si/SiGe/Si异质结和衬底进行分离; (d) 在TMAH溶液中选择性刻蚀掉上下Si层后的SiGe薄膜; (e) 在去离子水中将SiGe纳米薄膜转移到Si(001)衬底上

    Figure 1.  Fabrication processes of SiGe nanomembrane: (a) MBE epitaxial growth of 60 nm Si, 80 nm Si0.78Ge0.22, and 280 nm Si on an SOI substrate; (b) fabrication of a periodic hole array on such heterostructure; (c) separation of the Si/SiGe/Si heterostructure from the Si substrate in IPA solution; (d) selective etching of the Si layers over SiGe in TMAH solution; (e) transfer of the SiGe nanomembrane onto a Si (001) substrate in deionized water.

    图 2  (a) Si0.78Ge0.22纳米薄膜在释放前(黑线)和释放后(红线)的拉曼光谱, 其中插图是Si0.78Ge0.22纳米膜转移到Si衬底后的光学显微镜图; (b) 在Si0.78Ge0.22纳米薄膜区域(黑线)和Si衬底区域(红线)生长Si/SiGe异质结后的拉曼光谱

    Figure 2.  (a) Raman spectra of Si0.78Ge0.22 nanomembrane before release (black line) and after release (red line), where the inset shows an optical microscope image of the Si0.78Ge0.22 nanomembrane transferred to a Si substrate; (b) Raman spectra after growing Si/SiGe heterostructure in the Si0.78Ge0.22 nanomembrane region (black line) and Si substrate region (red line).

    图 3  (a) SOI衬底上生长Si/SiGe/Si异质结后的表面AFM图; (b) Si0.78Ge0.22纳米薄膜转移到Si衬底后的表面AFM; (c) 转移Si0.78Ge0.22纳米薄膜区域上生长Si/SiGe异质结后的表面AFM图; (d) 在Si衬底区域直接生长Si/SiGe异质结后的表面AFM图; (e) 在Si0.78Ge0.22纳米薄膜区域生长Si/SiGe异质结后的表面ECCI图; (f)在Si衬底区域直接生长Si/SiGe异质结后的表面ECCI图

    Figure 3.  (a) AFM image of the surface after growing Si/SiGe/Si structure on an SOI substrate; (b) AFM image of the surface after transferring Si0.78Ge0.22 nanomembrane to a Si substrate; (c) AFM image of the surface after growing Si/SiGe heterostructure on the transferred Si0.78Ge0.22 nanomembrane region; (d) AFM image of the surface after directly growing Si/SiGe heterostructure on the Si region; (e) electron channel contrast imaging (ECCI) of the surface after growing Si/SiGe heterostructure on the Si0.78Ge0.22 nanomembrane region; (f) ECCI of the surface after directly growing Si/SiGe heterostructure on the Si substrate region.

    图 4  (a) Si(001)衬底上转移Si0.78Ge0.22纳米薄膜上生长Si/SiGe异质结后的截面STEM-HAADF原子图像; (b) 转移Si0.78Ge0.22纳米薄膜与外延Si0.78Ge0.22薄膜的截面STEM-HAADF原子图像; (c) Si衬底与Si0.78Ge0.22纳米薄膜界面的高倍STEM-HAADF原子图像; (d) Si量子阱附近的Si元素EDS谱; (e) Si量子阱附近的Ge元素EDS谱; (f) Si量子阱附近的高倍STEM-HAADF原子图像; (g) Si量子阱与Si0.78Ge0.22界面处的STEM-HAADF原子图像

    Figure 4.  (a) STEM-HAADF image after growing Si/SiGe heterostructure on transferred Si0.78Ge0.22 nanomembrane on Si (001); (b) STEM-HAADF image showing the interface between the transferred and epitaxial Si0.78Ge0.22; (c) high-magnified STEM-HAADF image showing the interface between the Si substrate and transferred Si0.78Ge0.22 nanomembrane; (d) EDS spectrum of Si element near the Si quantum well; (e) EDS spectrum of Ge element near the Si quantum well; (f) high-magnified STEM-HAADF image near the Si quantum well; (g) STEM-HAADF atomic image showing the interface between the Si quantum well and the Si0.78Ge0.22 spacer layer.

  • [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng. 19 41Google Scholar

    [2]

    Shalf J 2020 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378 20190061Google Scholar

    [3]

    Thompson S E, Parthasarathy S 2006 Mater. Today 9 20Google Scholar

    [4]

    Arienzo M, Iyer S S, Meyerson B S, Patton G L, Stork J M C 1991 Appl. Surf. Sci. 48 377Google Scholar

    [5]

    Azevedo A M D, Lopes T J, Cardoso D D, Monterio S N, Silveira P C R, Figueiredo A B H D S 2024 Obs. Econ. Latinoam. 22 e8370Google Scholar

    [6]

    Cressler J D 1998 IEEE Trans. Microw. Theory Tech. 46 572Google Scholar

    [7]

    Harame D L, Koester S J, Freeman G, Cottrel P, Rim K, Dehlinger G, Ahlgren D, Dunn J S, Greenberg D, Joseph A, Anderson F, Rieh J S, Onge S A S T, Coolbaugh D, Ramachandran V, Cressler J D, Subbanna S 2004 Appl. Surf. Sci. 224 9Google Scholar

    [8]

    Soref R A 1993 Proc. IEEE 81 1687Google Scholar

    [9]

    Wang K L, Cha D, Liu J, Chen C 2007 Proc. IEEE 95 1866Google Scholar

    [10]

    张结印, 高飞, 张建军 2021 物理学报 70 217802Google Scholar

    Zhang J Y, Gao F, Zhang J J 2021 Acta Phys. Sin. 70 217802Google Scholar

    [11]

    Tai C T, Li J Y 2024 Mater. Quantum Technol. 4 012001Google Scholar

    [12]

    Connors E J, Nelson J, Edge L F, Nichol J M 2022 Nat. Commun. 13 940Google Scholar

    [13]

    Bian H, Goh Y Y, Liu Y, Ling H, Xie L, Liu X 2021 Adv. Mater. 33 2006469Google Scholar

    [14]

    Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R, Michel J, Mii Y J, Weir B E 1991 Appl. Phys. Lett. 59 811Google Scholar

    [15]

    Hartmann J M, Gallas B, Zhang J, Harris J J, Joyce B A 1999 J. Appl. Phys. 86 845Google Scholar

    [16]

    Rahman M M, Matada H, Tambo T, Tatsuyama C 2001 Appl. Surf. Sci. 175 6Google Scholar

    [17]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64Google Scholar

    [18]

    耿鑫, 张结印, 卢文龙, 明铭, 刘方泽, 符彬啸, 褚逸昕, 颜谋回, 王保传, 张新定, 郭国平, 张建军 2024 物理学报 73 117302Google Scholar

    Geng X, Zhang J Y, Lu W L, Ming M, Liu F Z, Fu B X, Chu Y X, Yan M H, Wang B C, Zhang X D, Guo G P, Zhang J J 2024 Acta Phys. Sin. 73 117302Google Scholar

    [19]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 MRS Proc. 220 413Google Scholar

    [20]

    Ismail K 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 2776Google Scholar

    [21]

    Monroe D, Xie Y H, Fitzgerald E A, Silverman P J, Watson G P 1993 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 11 1731Google Scholar

    [22]

    Paskiewicz D M, Tanto B, Savage D E, Lagally M G 2011 ACS Nano 5 5814Google Scholar

    [23]

    Li Y S, Sookchoo P, Cui X, Mohr R, Savage D E, Foote R H, Jacobson R, Sánchez-Pérez J R, Paskiewicz D M, Wu X, Ward D R, Coppersmith S N, Eriksson M A, Lagally M G 2015 ACS Nano 9 4891Google Scholar

    [24]

    Schäffler F 1997 Semicond. Sci. Technol. 12 1515Google Scholar

    [25]

    Schmidt O G, Eberl K 2001 Nature 410 168Google Scholar

    [26]

    Wolf I D 1996 Semicond. Sci. Technol. 11 139Google Scholar

    [27]

    Pezzoli F, Bonera E, Grilli E, Guzzi M, Sanguinetti S, Chrastina D, Isella G, Von Känel H, Wintersberger E, Stangl J, Bauer G 2008 J. Appl. Phys. 103 093521Google Scholar

    [28]

    Nakashima S, Mitani T, Ninomiya M, Matsumoto K 2006 J. Appl. Phys. 99 053512Google Scholar

    [29]

    Wong L H, Wong C C, Liu J P, Sohn D K, Chan L, Hsia L C, Zang H, Ni Z H, Shen Z X 2005 Jpn. J. Appl. Phys. 44 7922Google Scholar

    [30]

    Loup V, Gabette L, Roure M C, Kachtouli R, Jourdan M, Besson P, Petitdidier S 2013 ECS Trans. 58 47Google Scholar

    [31]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuators Phys. 80 179Google Scholar

  • [1] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [4] Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong. Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Acta Physica Sinica, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [5] Li Geng, Guo Hui, Gao Hong-Jun. Novel two-dimensional materials and their heterostructures constructed in ultra-high vacuum. Acta Physica Sinica, 2022, 71(10): 106801. doi: 10.7498/aps.71.20212407
    [6] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [7] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [8] Gao Fei, Feng Qi, Wang Ting, Zhang Jian-Jun. Controllable growth of GeSi nanowires on trench patterned Si(001) substrate. Acta Physica Sinica, 2020, 69(2): 028102. doi: 10.7498/aps.69.20191407
    [9] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [10] Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng. Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001). Acta Physica Sinica, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [11] Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan. Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy. Acta Physica Sinica, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [12] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [13] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [14] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [15] Wu Chen-Yang, Gu Jin-Hua, Feng Ya-Yang, Xue Yuan, Lu Jing-Xiao. The characterization of hydrogenated amorphous silicon and epitaxial silicon thin films grown on crystalline silicon substrates by using spectroscopic ellipsometry. Acta Physica Sinica, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [16] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [17] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [18] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [19] Fan Long, Hao Yue. The effect of radiation induced strain relaxation on electric performance of AlmGa1-mN/GaN HEMT. Acta Physica Sinica, 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  342
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2025
  • Accepted Date:  21 March 2025
  • Available Online:  19 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回