Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films

LI Boyu HU Kejun LIN Renju HAN Kun HUANG Zhen GE Binghui SONG Dongsheng

Citation:

Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films

LI Boyu, HU Kejun, LIN Renju, HAN Kun, HUANG Zhen, GE Binghui, SONG Dongsheng
cstr: 32037.14.aps.74.20250171
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The discovery of superconductivity in infinite-layer nickelate Nd0.8Sr0.2NiO2 has established another type of unconventional superconductors, whose structure and electron pairing mechanism are similar to those of cuprate superconductors. Unlike in cuprate superconductors, superconductivity in infinite-layer nickelates has only been observed in thin film samples, where heterointerface structures, elemental doping, and the infinite-layer configuration are critical for epitaxial systems. Therefore, the film-substrate interfacial effects require exploration for understanding superconductivity. However, comparative studies on the interfacial structures between superconducting and non-superconducting Nd0.8Sr0.2NiOx nickelate thin films have not been reported in the literature so far.This work focuses on Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3, and the phase distribution and interfacial structural changes in superconducting and non-superconducting nickelate thin films are characterized in detail by using scanning transmission electron microscopy (STEM). Further analysis of the corresponding atomic high-angle annular dark filed (HAADF), integrated differential phase contrast (iDPC) and energy dispersive X-ray spectroscopy (EDS) maps reveals the phenomena such as elements mixing, atomic steps, and changes in lattice parameters at the interfaces. These results also show that in the Nd0.8Sr0.2NiO2 film, the first 1−2 unit cells near the interface are not fully reduced to the superconducting infinite-layer structure. Such findings contribute to alleviating the strong polarity discontinuity at the sharp interface.This study also emphasizes the atomic reconstruction and the modulation effect at the interface between the substrate and the film, thus enriching the understanding of the structural properties of the Nd0.8Sr0.2NiOx films, and providing crucial experimental evidence for understanding the interfacial structure of infinite-layer nickelates.
      Corresponding author: HAN Kun, hankun@ahu.edu.cn ; SONG Dongsheng, dsong@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173215, 52473226).
    [1]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [2]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [3]

    Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D F, Hwang H Y, Pentcheva R, Kourkoutis L F 2023 Nat. Mater. 22 466Google Scholar

    [4]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [5]

    Crespin M, Levitz P, Gatineau L 1983 J. Chem. Soc., Faraday Trans. 79 1181Google Scholar

    [6]

    Hayward M A, Green M A, Rosseinsky M J, Sloan J 1999 J. Am. Chem. Soc. 121 8843Google Scholar

    [7]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [8]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [9]

    Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, Hepting M 2021 Sci. Adv. 7 eabl8091Google Scholar

    [10]

    Li Q, He C P, Si J, Zhu X Y, Zhang Y, Wen H H 2020 Commun. Mater. 1 16Google Scholar

    [11]

    Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F 2020 Phys. Rev. Mater. 4 084409Google Scholar

    [12]

    Lee Y, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth. DOI: 10.1038/s44160-024-00714-2

    [13]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S 2023 Nature 621 493Google Scholar

    [14]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [15]

    Zhou G D, Lü W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K 2025 Nature 640 641Google Scholar

    [16]

    Bernardini F, Olevano V, Blase X, Cano A 2020 J. Phys. Mater. 3 035003Google Scholar

    [17]

    Geisler B, Pentcheva R 2020 Phys. Rev. B 102 020502Google Scholar

    [18]

    Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, Hwang H Y 2020 APL Mater. 8 041107Google Scholar

    [19]

    Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y, Yamamoto T 2011 Appl. Phys. Lett. 99 033110Google Scholar

    [20]

    Bak J, Bae H B, Kim J, Oh J, Chung S Y 2017 Nano Lett. 17 3126Google Scholar

    [21]

    Goodge B H, Li D F, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, Kourkoutis L F 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2007683118Google Scholar

    [22]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

  • 图 1  (a), (b) Nd0.8Sr0.2NiO3/SrTiO3原子模型图及对应的HAADF图像; (c), (d) Nd0.8Sr0.2NiO2/SrTiO3原子模型图及对应的HAADF图像; (e) Nd0.8Sr0.2NiO2/SrTiO3, Nd0.8Sr0.2NiO3/SrTiO3的电阻率随温度的变化; (f), (g) Nd0.8Sr0.2NiO2/SrTiO3, Nd0.8Sr0.2NiO3/SrTiO3的几何相位图, 黄框标记的为RP相区域

    Figure 1.  (a), (b) Atomic structure model and HAADF image of the Nd0.8Sr0.2NiO3/SrTiO3; (c), (d) the atomic structure model and HAADF image of the Nd0.8Sr0.2NiO2/SrTiO3; (e) the temperature-dependent resistivity profile of Nd0.8Sr0.2NiO2/SrTiO3 and Nd0.8Sr0.2NiO3/SrTiO3; (f), (g) the geometric phase analysis of Nd0.8Sr0.2NiO2/SrTiO3 and Nd0.8Sr0.2NiO3/SrTiO3, the RP phase regions marked by yellow boxes.

    图 2  (a) Nd0.8Sr0.2NiO3/STO界面[100]取向的HAADF图像及相应的EDS分布图; (b) 图(a)对应的EDS积分强度分析图; (c) Nd0.8Sr0.2NiO2/STO界面[100]取向HAADF图像及相应的EDS分布图; (d) 图(c)对应的EDS积分强度分析图

    Figure 2.  (a) HAADF image at [100] orientation of the Nd0.8Sr0.2NiO3/STO interface and corresponding EDS mapping images; (b) the EDS integrated line intensity analysis corresponding to panel (a); (c) the HAADF image at [100] orientation of the Nd0.8Sr0.2NiO2/STO interface and corresponding EDS mapping images; (d) the EDS intensity analysis corresponding to panel (c).

    图 3  (a) Nd0.8Sr0.2NiO3/SrTiO3沿[100]方向HAADF和iDPC图像; (b) Nd0.8Sr0.2NiO2/SrTiO3沿[100]方向HAADF和iDPC图像; (c) Nd0.8Sr0.2NiO2/SrTiO3界面处原子台阶HAADF图像; (d) Nd0.8Sr0.2NiO2/SrTiO3界面处面内a和面外c晶格常数在空间上的变化; (e) 1, 2, 3三个区域对应的放大iDPC图和原子模型图

    Figure 3.  (a) HAADF and iDPC images in the direction of [100] of the Nd0.8Sr0.2NiO3/SrTiO3; (b) HAADF and iDPC images in the direction of [100] of the Nd0.8Sr0.2NiO2/SrTiO3; (c) HAADF image of atomic steps appear at the Nd0.8Sr0.2NiO2/SrTiO3 interface; (d) spatial variation of the in-plane (a) and out-of-plane (c) lattice parameters across the Nd0.8Sr0.2NiO2/SrTiO3; (e) the magnified iDPC images and structure model corresponding to regions 1, 2 and 3.

    图 4  (a), (c) Nd0.8Sr0.2NiO3/SrTiO3, Nd0.8Sr0.2NiO2/SrTiO3薄膜沿[100]带轴的HAADF图像; (b), (d) Nd0.8Sr0.2NiO3/SrTiO3, Nd0.8Sr0.2NiO2/SrTiO3沿面内和面外方向的晶格常数随位置的变化

    Figure 4.  (a), (c) HAADF images of the Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3 films along the [100] axis; (b), (d) variation of the lattice constants along the in-plane and out-of-plane directions as a function of position for Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3 films.

  • [1]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [2]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [3]

    Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D F, Hwang H Y, Pentcheva R, Kourkoutis L F 2023 Nat. Mater. 22 466Google Scholar

    [4]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [5]

    Crespin M, Levitz P, Gatineau L 1983 J. Chem. Soc., Faraday Trans. 79 1181Google Scholar

    [6]

    Hayward M A, Green M A, Rosseinsky M J, Sloan J 1999 J. Am. Chem. Soc. 121 8843Google Scholar

    [7]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [8]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [9]

    Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, Hepting M 2021 Sci. Adv. 7 eabl8091Google Scholar

    [10]

    Li Q, He C P, Si J, Zhu X Y, Zhang Y, Wen H H 2020 Commun. Mater. 1 16Google Scholar

    [11]

    Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F 2020 Phys. Rev. Mater. 4 084409Google Scholar

    [12]

    Lee Y, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth. DOI: 10.1038/s44160-024-00714-2

    [13]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S 2023 Nature 621 493Google Scholar

    [14]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [15]

    Zhou G D, Lü W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K 2025 Nature 640 641Google Scholar

    [16]

    Bernardini F, Olevano V, Blase X, Cano A 2020 J. Phys. Mater. 3 035003Google Scholar

    [17]

    Geisler B, Pentcheva R 2020 Phys. Rev. B 102 020502Google Scholar

    [18]

    Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, Hwang H Y 2020 APL Mater. 8 041107Google Scholar

    [19]

    Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y, Yamamoto T 2011 Appl. Phys. Lett. 99 033110Google Scholar

    [20]

    Bak J, Bae H B, Kim J, Oh J, Chung S Y 2017 Nano Lett. 17 3126Google Scholar

    [21]

    Goodge B H, Li D F, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, Kourkoutis L F 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2007683118Google Scholar

    [22]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

  • [1] CHEN Zhuoyu, HUANG Haoliang, XUE Qikun. Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects. Acta Physica Sinica, 2025, 74(9): 097401. doi: 10.7498/aps.74.20250331
    [2] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [3] Gong Yue, Gu Lin. Structural evolution and matter transportation of the interface in all-solid-state battery. Acta Physica Sinica, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [4] Li Chao, Yao Yuan, Yang Yang, Shen Xi, Gao Bin, Huo Zong-Liang, Kang Jin-Feng, Liu Ming, Yu Ri-Cheng. In situ transmission electron microscopy studies on nanomaterials and HfO2-based storage nanodevices. Acta Physica Sinica, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [5] Li Dong-Dong, Zhou Wu. Low voltage scanning transmission electron microscopy for two-dimensional materials. Acta Physica Sinica, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [6] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [7] Jia Yan-Li, Yang Hua, Yuan Jie, Yu He-Shan, Feng Zhong-Pei, Xia Hai-Liang, Shi Yu-Jun, He Ge, Hu Wei, Long You-Wen, Zhu Bei-Yi, Jin Kui. A brief analysis of annealing process for electron-doped cuprate superconductors. Acta Physica Sinica, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [8] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [9] Lu Hong-Yan, Chen San, Liu Bao-Tong. Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [10] Wen Cai, Li Fang-Hua, Zou Jin, Chen Hong. High-resolution electron microscopy of misfit dislocations in AlSb/GaAs(001) system. Acta Physica Sinica, 2010, 59(3): 1928-1937. doi: 10.7498/aps.59.1928
    [11] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [12] CHEN ZHEN-PING, ZHANG JIN-CANG, CHENG GUO-SHENG, LI XI-GUI, ZHANG XUN-SHENG. STUDY OF THE SYNTHESIS PROCESS AND STRUCTURAL DEFECTS IN Y-123 SUPERCONDUCTING SYSTEMS BY POSITRON EXPERIMENT. Acta Physica Sinica, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [13] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [14] GAO YI-HUA, ZHANG ZE, YAN MING-LANG, LAI WU-YAN. HREM STUDY OF THE INTERFACIAL STRUCTURE OF NiFe/Mo MAGNETIC MULTILAYERS. Acta Physica Sinica, 1998, 47(5): 765-777. doi: 10.7498/aps.47.765
    [15] YU CHAO-FAN, CHEN BIN, HE GUO-ZHU. SUPERCONDUCTIVITY MECHANISM OF NON-CUPRATE SUPERCONDUCTORS. Acta Physica Sinica, 1994, 43(7): 1152-1158. doi: 10.7498/aps.43.1152
    [16] LI YI-JIE, XIONG GUANG-CHENG, GAN ZI-ZHAO, REN CONG-XIN, ZOU SHI-CHANG. TEM STUDY OF MICROSTRUCTURAL CHANGES INDUCED BY AR ION IMPLANTATION IN YBa2Cu3O7-x SUPERCONDUCTING FILMS. Acta Physica Sinica, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [17] ZHAO JIAN-GUO, LI FANG-HUA, CHEN WEI, XIE SI-SHEN, CAO NING, ZHENG JIA-QI. HIGH RESOLUTION ELECTRON MICROSCOPY STUDY ON HIGH Tc SUPERCONDUCTOR Nd-Ba-Cu-O. Acta Physica Sinica, 1989, 38(3): 508-510. doi: 10.7498/aps.38.508
    [18] KONG QING-PING, WANG XIANG, ZHOU HAO, NI QUN-HUI. ELECTRON MICROSCOPY STUDIES ON THE INTERACTION BETWEEN CREEP AND FATIGUE. Acta Physica Sinica, 1986, 35(8): 1091-1094. doi: 10.7498/aps.35.1091
    [19] LI FANG-HUA, TANG DONG. PSEUDO WEAK PHASE OBJECT APPROXIMATION IN HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1984, 33(8): 1196-1197. doi: 10.7498/aps.33.1196
    [20] . Acta Physica Sinica, 1975, 24(2): 83-86. doi: 10.7498/aps.24.83
Metrics
  • Abstract views:  387
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2025
  • Accepted Date:  07 April 2025
  • Available Online:  19 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回