-
Two-dimensional transition metal borides (MBene), as emerging electrode materials for metal-ion batteries, exhibit various phase structures, including MB, M2B, and M2B2. However, current research on the M2B-phase system remains insufficient. This study focuses on the design of M2B-phase MBenes, pioneering the construction of two novel sulfur-functionalized materials, Zr2BS2 and Nb2BS2, while systematically elucidating their performance mechanisms as anode materials for lithium/sodium-ion batteries. Through first-principles calculations, both Zr2BS2 and Nb2BS2 demonstrate exceptional structural stability and superior electrochemical properties in sodium-ion battery applications. Specifically, they exhibit high theoretical specific capacities (624 mA·h/g and 616 mA·h/g) and remarkably low diffusion energy barriers for Na+ (0.131 eV and 0.088 eV). Moreover, their low open-circuit voltages (0.38 V and 0.21 V) effectively suppress dendrite growth, achieving an optimal balance between high capacity and operational safety. This work not only establishes a theoretical framework for MBene-based anode design but also provides critical insights into the correlation between surface functionalization, structural stability, and ion transport kinetics. These findings provide valuable guidance for developing other two-dimensional materials and non-layered systems, while contributing to mechanistic understanding of charge-discharge processes in transition metal dichalcogenide TMD-based lithium/sodium-ion batteries.
[1] Dusastre V, Martiradonna L 2017 Nat. Mater. 16 15
Google Scholar
[2] Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020 Adv. Energy Mater. 10 2000183
Google Scholar
[3] Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194
Google Scholar
[4] Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013 J. Power Sources 241 680
Google Scholar
[5] Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015 J. Power Sources 286 330
Google Scholar
[6] Jin L M, Shen C, Shellikeri A, Wu Q, Zheng J S, Andrei P, Zhang J G, Zheng J P 2020 Energy Environ. Sci. 13 2341
Google Scholar
[7] Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019 Chem. Soc. Rev. 48 1272
Google Scholar
[8] Soltani M, Beheshti S H 2021 J. Energy Storage 34 102019
Google Scholar
[9] Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012 Angew. Chem. Int. Ed. 51 9994
Google Scholar
[10] Fang Y J, Xiao L F, Chen Z X, Ai X P, Cao Y L, Yang H X 2018 Electrochem. Energy Rev. 1 294
Google Scholar
[11] Li F, Tang Q 2019 ACS Appl. Nano Mater. 2 7220
Google Scholar
[12] Zhang B K, Zhou J, Guo Z L, Peng Q, Sun Z M 2020 Appl. Surf. Sci. 500 144248
Google Scholar
[13] Liu X, Ge X L, Dong Y, Fu K, Meng F B, Si R H, Zhang M H, Xu X W 2020 Mater. Chem. Phys. 253 123334
Google Scholar
[14] Zhang B K, Zhou J, Sun Z M 2022 J. Mater. Chem. A 10 15865
Google Scholar
[15] Guo Z L, Zhou J, Sun Z M 2017 J. Mater. Chem. A 5 23530
Google Scholar
[16] Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020 Nanoscale Adv. 2 347
Google Scholar
[17] Ma N G, Wang T R, Li N, Li Y R, Fan J 2022 Appl. Surf. Sci. 571 151275
Google Scholar
[18] Jia J, Li B J, Duan S Q, Cui Z, Gao H T 2019 Nanoscale 11 20307
Google Scholar
[19] Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P O Å, Rosen J 2021 Science 373 801
Google Scholar
[20] Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021 J. Phys.: Condens. Matter 33 155503
Google Scholar
[21] Liang B C, Ma N G, Wang Y H, Wang T R, Fan J 2022 Appl. Surf. Sci. 599 153927
Google Scholar
[22] Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019 J. Phys. Chem. C 123 25052
Google Scholar
[23] Li D Q, Chen X F, Xiang P, Du H Y, Xiao B B 2020 Appl. Surf. Sci. 501 144221
Google Scholar
[24] Wang Y H, Ma N G, Liang B C, Fan J 2022 Appl. Surf. Sci. 596 153619
Google Scholar
[25] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[26] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[28] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
Google Scholar
[29] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982
Google Scholar
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[31] Grimme S 2006 J. Comput. Chem. 27 1787
Google Scholar
[32] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
Google Scholar
[33] Togo A, Tanaka I 2015 Scr. Mater. 108 1
Google Scholar
[34] Paier J, Hirschl R, Marsman M, Kresse G 2005 J. Chem. Phys. 122 234102
Google Scholar
[35] Yuan X, Zhang Z Y, He Y P, Zhao S Q, Zhou N G 2022 J. Phys. Chem. C 126 91
Google Scholar
[36] Yan B Z, Lu C J, Zhang P G, Chen J, He W, Tian W B, Zhang W, Sun Z M 2020 Mater. Today Commun. 22 100713
Google Scholar
[37] Chen Z H, Huang S W, Yuan X, Gan X L, Zhou N G 2021 Appl. Surf. Sci. 544 148861
Google Scholar
[38] Singh S, Espejo C, Romero A H 2018 Phys. Rev. B 98 155309
Google Scholar
[39] Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012 Phys. Rev. B 85 125428
Google Scholar
[40] Born M, Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press) pp129–165
[41] Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016 Nanoscale 13 2918
Google Scholar
[42] Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y G, Yang S A 2016 J. Mater. Chem. A 4 15224
Google Scholar
[43] Meng Q Q, Ma J L, Zhang Y H, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652
Google Scholar
[44] Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J 2018 Nanoscale 10 3385
Google Scholar
[45] Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877
Google Scholar
[46] Gao S L, Hao J B, Zhang X H, Li L, Zhang C L, Wu L Y, Ma X G, Lu P F, Liu G 2021 Comput. Mater. Sci. 200 110776
Google Scholar
[47] Urban A, Seo D H, Ceder G 2016 npj Comput. Mater. 2 16002
Google Scholar
[48] Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354
Google Scholar
[49] Eames C, Islam M S 2014 J. Am. Chem. Soc. 136 16270
Google Scholar
[50] Yang E, Ji H, Kim J, Kim H, Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000
Google Scholar
-
图 4 (a) Zr2BS2和(b) Nb2BS2结构模型及不同位点的吸附能; Zr2BS2 (0 1 0)截面的(c) Li和(d) Na不同位点的差分电荷密度; Nb2BS2 (0 1 0)截面的(e) Li和(f) Na不同位点的差分电荷密度
Figure 4. Structural model of (a) Zr2BS2 and (b) Nb2BS2 with adsorption energies at different sites; differential charge density for Li and Na at different sites on the (0 1 0) plane of (c), (d) Zr2BS2 and (e), (f) Nb2BS2.
表 1 Zr2BS2, Nb2BS2和MoS2的弹性常数、杨氏模量、泊松比计算结果及文献[38]结果
Table 1. Calculated results of elastic constants, Young’s modulus, Poisson’s ratio of Zr2BS2, Nb2BS2, and MoS2, and the results from Ref. [38].
System C11/
(N·m–1)C22/
(N·m–1)C12/
(N·m–1)$ E_{x(y)}^{\rm 2D} $/
(N·m–1)$ v_{x(y)}^{2{\text{D}}} $ Zr2BS2 131.1 131.1 28.1 125.1 0.21 Nb2BS2 197.2 197.2 43.0 187.8 0.22 MoS2 135.4 135.4 30.6 128.4 0.23 MoS2[38] 132.3 132.3 32.8 124.1 0.25 -
[1] Dusastre V, Martiradonna L 2017 Nat. Mater. 16 15
Google Scholar
[2] Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020 Adv. Energy Mater. 10 2000183
Google Scholar
[3] Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194
Google Scholar
[4] Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013 J. Power Sources 241 680
Google Scholar
[5] Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015 J. Power Sources 286 330
Google Scholar
[6] Jin L M, Shen C, Shellikeri A, Wu Q, Zheng J S, Andrei P, Zhang J G, Zheng J P 2020 Energy Environ. Sci. 13 2341
Google Scholar
[7] Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019 Chem. Soc. Rev. 48 1272
Google Scholar
[8] Soltani M, Beheshti S H 2021 J. Energy Storage 34 102019
Google Scholar
[9] Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012 Angew. Chem. Int. Ed. 51 9994
Google Scholar
[10] Fang Y J, Xiao L F, Chen Z X, Ai X P, Cao Y L, Yang H X 2018 Electrochem. Energy Rev. 1 294
Google Scholar
[11] Li F, Tang Q 2019 ACS Appl. Nano Mater. 2 7220
Google Scholar
[12] Zhang B K, Zhou J, Guo Z L, Peng Q, Sun Z M 2020 Appl. Surf. Sci. 500 144248
Google Scholar
[13] Liu X, Ge X L, Dong Y, Fu K, Meng F B, Si R H, Zhang M H, Xu X W 2020 Mater. Chem. Phys. 253 123334
Google Scholar
[14] Zhang B K, Zhou J, Sun Z M 2022 J. Mater. Chem. A 10 15865
Google Scholar
[15] Guo Z L, Zhou J, Sun Z M 2017 J. Mater. Chem. A 5 23530
Google Scholar
[16] Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020 Nanoscale Adv. 2 347
Google Scholar
[17] Ma N G, Wang T R, Li N, Li Y R, Fan J 2022 Appl. Surf. Sci. 571 151275
Google Scholar
[18] Jia J, Li B J, Duan S Q, Cui Z, Gao H T 2019 Nanoscale 11 20307
Google Scholar
[19] Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P O Å, Rosen J 2021 Science 373 801
Google Scholar
[20] Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021 J. Phys.: Condens. Matter 33 155503
Google Scholar
[21] Liang B C, Ma N G, Wang Y H, Wang T R, Fan J 2022 Appl. Surf. Sci. 599 153927
Google Scholar
[22] Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019 J. Phys. Chem. C 123 25052
Google Scholar
[23] Li D Q, Chen X F, Xiang P, Du H Y, Xiao B B 2020 Appl. Surf. Sci. 501 144221
Google Scholar
[24] Wang Y H, Ma N G, Liang B C, Fan J 2022 Appl. Surf. Sci. 596 153619
Google Scholar
[25] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[26] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[28] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
Google Scholar
[29] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982
Google Scholar
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[31] Grimme S 2006 J. Comput. Chem. 27 1787
Google Scholar
[32] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
Google Scholar
[33] Togo A, Tanaka I 2015 Scr. Mater. 108 1
Google Scholar
[34] Paier J, Hirschl R, Marsman M, Kresse G 2005 J. Chem. Phys. 122 234102
Google Scholar
[35] Yuan X, Zhang Z Y, He Y P, Zhao S Q, Zhou N G 2022 J. Phys. Chem. C 126 91
Google Scholar
[36] Yan B Z, Lu C J, Zhang P G, Chen J, He W, Tian W B, Zhang W, Sun Z M 2020 Mater. Today Commun. 22 100713
Google Scholar
[37] Chen Z H, Huang S W, Yuan X, Gan X L, Zhou N G 2021 Appl. Surf. Sci. 544 148861
Google Scholar
[38] Singh S, Espejo C, Romero A H 2018 Phys. Rev. B 98 155309
Google Scholar
[39] Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012 Phys. Rev. B 85 125428
Google Scholar
[40] Born M, Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press) pp129–165
[41] Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016 Nanoscale 13 2918
Google Scholar
[42] Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y G, Yang S A 2016 J. Mater. Chem. A 4 15224
Google Scholar
[43] Meng Q Q, Ma J L, Zhang Y H, Li Z, Hu A, Kai J J, Fan J 2018 J. Mater. Chem. A 6 13652
Google Scholar
[44] Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J 2018 Nanoscale 10 3385
Google Scholar
[45] Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019 Nano Energy 58 877
Google Scholar
[46] Gao S L, Hao J B, Zhang X H, Li L, Zhang C L, Wu L Y, Ma X G, Lu P F, Liu G 2021 Comput. Mater. Sci. 200 110776
Google Scholar
[47] Urban A, Seo D H, Ceder G 2016 npj Comput. Mater. 2 16002
Google Scholar
[48] Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354
Google Scholar
[49] Eames C, Islam M S 2014 J. Am. Chem. Soc. 136 16270
Google Scholar
[50] Yang E, Ji H, Kim J, Kim H, Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000
Google Scholar
Catalog
Metrics
- Abstract views: 332
- PDF Downloads: 8
- Cited By: 0