Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical behavior evolution of TATB particle system based on CT in-situ characterization under load

TAO Jie LI Haining DAI Bin LAN Lingang GUO Fei ZHANG Weibin NIE Fude

Citation:

Mechanical behavior evolution of TATB particle system based on CT in-situ characterization under load

TAO Jie, LI Haining, DAI Bin, LAN Lingang, GUO Fei, ZHANG Weibin, NIE Fude
cstr: 32037.14.aps.74.20250272
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • TATB is currently the safest explosive in terms of safety performance. Polymer bonded explosive (PBX) formed by pressing TATB particles has important applications in military. Under the action of stress, the evolution of TATB particle system determines the microstructure and overall quality of molding grain. The molding method of PBX is usually realized by molding technology. In the process of molding, the structural evolution and mechanical properties of TATB particle system are very complex under the action of loading, and the high discreteness, strong non-linearity and bonding characteristics are difficult to characterize.In this study, a set of image processing technologies is developed for the TATB particle system by using X-μCT tomography and synchronous in-situ force loading. The TATB particles are a special composite material with multile components, irregularities, multiple particle sizes, heterogeneity, and viscoelasticity. High-quality CT images of TATB particles under force loading are obtained. A three-dimensional pore network model (PNM) of the TATB particle system is established by CT image processing and analysis. Based on the model, the evolution characteristics of key parameters such as contact number, contact area, contact strength and coordination number are obtained.The results indicate the evolutionary characteristics below. At 0–5 MPa, with the press proceeding, the stress of TATB particle system increases continuously, and the number of particle contacts in the particle system decreases, with a reduction rate of 53.3%. The total contact area decreases by 31.5%, but the average contact area of a single particle continues to increase; The strong contact and weak contact of the entire particle system show a decreasing trend, but the ratio of strong contact to weak contact remains almost unchanged, reflecting the stability characteristics of the TATB molding particle system in the external stable, linear, and slow loading process, and the average proportion of strong contact is 37.74%. The average increase rate of particle volume is 45.50%, and the curve of equivalent radius is very consistent with the curve of average particle volume. The average coordination number of the entire particle system increases from 7.27 to 9.44, and the highest coordination number is in a range of 6–10. The morphological distribution shows the characteristics of approximately normal distribution, double-peak nearly normal distribution, and flat-peak nearly normal distribution. At 5 MPa, some particles show the characteristics of rotation and adaptive rearrangement, which are consistent with the quantitative analysis of the trend of particle contact number.This study reveals the movement, deformation and fusion rules of particles in the initial stage of the forming process, achieving the three-dimensional, quantitative and in-situ analysis of the force loading process of the particle system. These results are of important scientific and engineering significance for understanding the mechanical characteristics of the explosive particle pressing process.
      Corresponding author: NIE Fude, niefude@caep.cn
    • Funds: Project supported by the Science Foundation of Institute of Chemical Materials of China Academy of Engineering Physics (Grant No. SXK-2022-15).
    [1]

    董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20—32页

    Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20–32

    [2]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [3]

    Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 123 21969Google Scholar

    [4]

    Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Appl. Phys. Lett. 114 191901Google Scholar

    [5]

    Hertz H 1882 J. Reine Angew. Math. 1882 156Google Scholar

    [6]

    Chang C S, Liao C L 1990 Int. J. Solids Structures. 26 437Google Scholar

    [7]

    Tordesillas A, Peters J F, Gardiner B S 2004 Int. J. Numer. Anal. Met. 28 981Google Scholar

    [8]

    Andrade J E, VlahiniĆ I, Lim K W, Jerves A 2012 Géotechn. Lett. 2 135Google Scholar

    [9]

    Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Phys. Rev. E 53 4673Google Scholar

    [10]

    Silva M D, Rajchenbach J 2000 Nature 406 708Google Scholar

    [11]

    Andrade J E, Avila C F 2012 Granul. Matter 14 51Google Scholar

    [12]

    Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 J. Mech. Phys. Solids 63 154Google Scholar

    [13]

    Zhai C P, Herbold E B, Hurley R C 2020 PNAS 117 16234Google Scholar

    [14]

    陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502Google Scholar

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502Google Scholar

    [15]

    Løvoll G. Måløy K J, Flekkøy E G 1999 Phys. Rev. E 60 5872Google Scholar

    [16]

    苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘源 2007 物理学报 56 4713Google Scholar

    Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin. 56 4713Google Scholar

    [17]

    杨荣伟 2009 硕士学位论文 (北京: 清华大学)

    Yang R W 2007 M. S. Thesis (Beijing: Tsinghua University

    [18]

    Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science 312 1631Google Scholar

    [19]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granul. Matter 11 1Google Scholar

    [20]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [21]

    Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technol. 356 439Google Scholar

    [22]

    Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotech. 14 749Google Scholar

    [23]

    Brisard S, Serdar M, Monteiro P J M 2020 Cement Concrete Res. 128 105824Google Scholar

    [24]

    Ramesh S, Thyagaraj T 2022 Geomech. Geophys. Geo. 8 11Google Scholar

    [25]

    Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils Found. 52 712Google Scholar

    [26]

    马寅翔, 刘晨, 王慧, 张才鑫, 陈华, 张伟斌 2020 含能材料 28 960Google Scholar

    Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin. J. Energ. Mater. 28 960Google Scholar

    [27]

    戴斌 2015 硕士学位论文 (北京: 中国工程物理研究院研究生院)

    Dai B 2015 M. S. Thesis (Beijing: Graduate School of China Academy of Engineering Physics

    [28]

    Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 2014 22nd Signal Processing and Communications Applications Conference Trabzon, April 23–25, 2014 p1971

    [29]

    Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomed. Signal Proces. 8 421Google Scholar

    [30]

    Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel 209 43Google Scholar

    [31]

    Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials 16 7426Google Scholar

    [32]

    Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Sci. Eng. 125 205280Google Scholar

    [33]

    Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 110 2142Google Scholar

    [34]

    任显卓, Linden Joost van der, Narsilio G 2019 地球科学 33 345Google Scholar

    Ren X Z, Linden J V D, Narsilio G 2019 Geoscience 33 345Google Scholar

    [35]

    尹升华, 陈勋, 刘超, 王雷鸣, 严荣富 2020 工程科学学报 42 972Google Scholar

    Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chin. J. Eng. 42 972Google Scholar

  • 图 1  TATB造型粉颗粒

    Figure 1.  TATB particles.

    图 2  TATB造型粉颗粒原位加载

    Figure 2.  The in-situ loading of TATB particles.

    图 3  CT图像处理算法流程

    Figure 3.  Flow chart of CT image processing algorithm.

    图 4  TATB造型粉颗粒体系的图像处理(切片) (a)感兴趣区域; (b)交互式阈值分割; (c)孔隙填充; (d)移除噪点; (e)中值滤波及双边滤波; (f)目标分离

    Figure 4.  Image processing of TATB particle system (slice): (a) ROI; (b) interactive thresholding; (c) fill holes; (d) remove small spots; (e) median filter and bilateral filter; (f) separate object.

    图 5  TATB造型粉颗粒体系的图像处理(3D) (a)感兴趣区域; (b)交互式阈值分割; (c)孔隙填充; (d)移除噪点; (e)中值滤波及双边滤波; (f)目标分离

    Figure 5.  Image processing of TATB particle system (3D): (a) ROI; (b) interactive thresholding; (c) fill holes; (d) remove small spots; (e) median filter and bilateral filter; (f) separate object.

    图 6  标记规则(标记后的骨架及相邻点)

    Figure 6.  Rule of labeling (marked skeleton and neighbour point).

    图 7  骨架与图的关联

    Figure 7.  Relationship between skeleton and graph.

    图 8  TATB造型粉颗粒体系孔隙网络模型

    Figure 8.  The PNM of TATB particle system.

    图 9  Z方向TATB造型粉颗粒体系的演化

    Figure 9.  Evolution of TATB particle system in Z direction.

    图 10  X方向TATB造型粉颗粒体系的演化

    Figure 10.  Evolution of TATB particle system in X direction.

    图 11  颗粒体系接触数量变化

    Figure 11.  Change of particle system contact number.

    图 12  颗粒体系接触面积变化

    Figure 12.  Change of particle system contact area.

    图 13  颗粒强弱接触变化 (a) 强弱接触数量变化; (b)强弱接触占比变化

    Figure 13.  Change of strong and weak particle contact: (a) Changes in the number of strong and weak contacts; (b) changes in the proportion of strong and weak contacts.

    图 14  颗粒体积、等效半径变化

    Figure 14.  Change of particle volume and equal radius.

    图 15  目标颗粒的配位数

    Figure 15.  Coordination number of target particle.

    图 16  0—5 MPa下颗粒体系配位数统计学分布 (a) 0 MPa; (b) 1 MPa; (c) 2 MPa; (d) 3 MPa; (e) 4 MPa; (f) 5 MPa

    Figure 16.  Statistical distribution of coordination number of particle system at 0—5 MPa: (a) 0 MPa; (b) 1 MPa; (c) 2 MPa; (d) 3 MPa; (e) 4 MPa; (f) 5 MPa.

    图 17  力载过程平均配位数数量分布演化

    Figure 17.  Evolution of mean coordination number distribution in loading process.

    图 18  力载过程平均配位数百分比演化

    Figure 18.  Evolution of mean coordination percentage in loading process.

  • [1]

    董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20—32页

    Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20–32

    [2]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [3]

    Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 123 21969Google Scholar

    [4]

    Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Appl. Phys. Lett. 114 191901Google Scholar

    [5]

    Hertz H 1882 J. Reine Angew. Math. 1882 156Google Scholar

    [6]

    Chang C S, Liao C L 1990 Int. J. Solids Structures. 26 437Google Scholar

    [7]

    Tordesillas A, Peters J F, Gardiner B S 2004 Int. J. Numer. Anal. Met. 28 981Google Scholar

    [8]

    Andrade J E, VlahiniĆ I, Lim K W, Jerves A 2012 Géotechn. Lett. 2 135Google Scholar

    [9]

    Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Phys. Rev. E 53 4673Google Scholar

    [10]

    Silva M D, Rajchenbach J 2000 Nature 406 708Google Scholar

    [11]

    Andrade J E, Avila C F 2012 Granul. Matter 14 51Google Scholar

    [12]

    Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 J. Mech. Phys. Solids 63 154Google Scholar

    [13]

    Zhai C P, Herbold E B, Hurley R C 2020 PNAS 117 16234Google Scholar

    [14]

    陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502Google Scholar

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502Google Scholar

    [15]

    Løvoll G. Måløy K J, Flekkøy E G 1999 Phys. Rev. E 60 5872Google Scholar

    [16]

    苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘源 2007 物理学报 56 4713Google Scholar

    Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin. 56 4713Google Scholar

    [17]

    杨荣伟 2009 硕士学位论文 (北京: 清华大学)

    Yang R W 2007 M. S. Thesis (Beijing: Tsinghua University

    [18]

    Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science 312 1631Google Scholar

    [19]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granul. Matter 11 1Google Scholar

    [20]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [21]

    Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technol. 356 439Google Scholar

    [22]

    Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotech. 14 749Google Scholar

    [23]

    Brisard S, Serdar M, Monteiro P J M 2020 Cement Concrete Res. 128 105824Google Scholar

    [24]

    Ramesh S, Thyagaraj T 2022 Geomech. Geophys. Geo. 8 11Google Scholar

    [25]

    Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils Found. 52 712Google Scholar

    [26]

    马寅翔, 刘晨, 王慧, 张才鑫, 陈华, 张伟斌 2020 含能材料 28 960Google Scholar

    Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin. J. Energ. Mater. 28 960Google Scholar

    [27]

    戴斌 2015 硕士学位论文 (北京: 中国工程物理研究院研究生院)

    Dai B 2015 M. S. Thesis (Beijing: Graduate School of China Academy of Engineering Physics

    [28]

    Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 2014 22nd Signal Processing and Communications Applications Conference Trabzon, April 23–25, 2014 p1971

    [29]

    Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomed. Signal Proces. 8 421Google Scholar

    [30]

    Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel 209 43Google Scholar

    [31]

    Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials 16 7426Google Scholar

    [32]

    Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Sci. Eng. 125 205280Google Scholar

    [33]

    Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 110 2142Google Scholar

    [34]

    任显卓, Linden Joost van der, Narsilio G 2019 地球科学 33 345Google Scholar

    Ren X Z, Linden J V D, Narsilio G 2019 Geoscience 33 345Google Scholar

    [35]

    尹升华, 陈勋, 刘超, 王雷鸣, 严荣富 2020 工程科学学报 42 972Google Scholar

    Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chin. J. Eng. 42 972Google Scholar

  • [1] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [2] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [3] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [4] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [5] Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang. Numerical study on acoustic behavior of two-dimensional granular system. Acta Physica Sinica, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [6] Zhao Xin-Wen, Li Xin-Zhu, Zhang Hang, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Kang Qiang, Huang Jin, Wu Qiang. Dynamical behaviors of Sn micro-sphere particles under shock wave action. Acta Physica Sinica, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [7] Jiang Wen-Can, Chen Hua, Zhang Wei-Bin. First-principles study of the phonon spectrum and heat capacity of TATB crystal. Acta Physica Sinica, 2016, 65(12): 126301. doi: 10.7498/aps.65.126301
    [8] Wu Di-Ping, Li Xing-Xiang, Qin Qin, Guan Ben, Zang Yong. Study on mechanical behavior of the transverse processing on a granular matter layer. Acta Physica Sinica, 2014, 63(9): 098201. doi: 10.7498/aps.63.098201
    [9] Li Lan-Kai, Wang Hou-Sheng, Ni Zhi-Peng, Cheng Jun-Sheng, Wang Qiu-Liang. Mechanical stress in superconducting coils during winding process. Acta Physica Sinica, 2013, 62(5): 058403. doi: 10.7498/aps.62.058403
    [10] Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng. Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model. Acta Physica Sinica, 2013, 62(1): 010503. doi: 10.7498/aps.62.010503
    [11] Ji Ying, Bi Qin-Sheng. Bifurcation analysis of slow-fast behavior in modified Chua's circuit. Acta Physica Sinica, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [12] Hu Xiao-Ping, Guo Hong. The influence of mass center motion on -type three-level atom dynamics. Acta Physica Sinica, 2009, 58(1): 272-277. doi: 10.7498/aps.58.272.1
    [13] Jiang Ze-Hui, Zheng Rui-Hua, Zhao Hai-Fa, Wu Jing. Dynamical behavior of a completely inelastic ball bouncing on a vibrating plate. Acta Physica Sinica, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [14] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Digital image correlation method for the analysis of 3-D internal displacement field in object. Acta Physica Sinica, 2006, 55(10): 5135-5139. doi: 10.7498/aps.55.5135
    [15] Tang Jun, Yang Xian-Qing, Qiu Kang. Studies on dynamical behavior in reaction limited aggregation model. Acta Physica Sinica, 2005, 54(7): 3307-3311. doi: 10.7498/aps.54.3307
    [16] HE DAI-HAI, XU JIAN-XUE, CHEN YONG-HONG. A STUDY ON STRANGE DYNAMICS OF A TWO-DIMENSIONAL MAP. Acta Physica Sinica, 1999, 48(9): 1611-1617. doi: 10.7498/aps.48.1611
    [17] YANG YUAN, DAI JIAN-HUA, ZHANG HONG-JUN. THE DYNAMICAL BEHAVIOR OF A DISCRETE MODEL OF OPTICAL BISTABLE SYSTEM. Acta Physica Sinica, 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [18] Teng Bao-hua. GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
    [19] WANG ZI-DAN, YAO XI-XIAN. DYNAMICAL BEHAVIOR OF RF-BIASED JOSEPHSON JUNCTIONS (Ⅱ). Acta Physica Sinica, 1985, 34(9): 1149-1155. doi: 10.7498/aps.34.1149
    [20] WANG ZI-DAN, YAO XI-XIAN. DYNAMICAL BEHAVIOR OF RF-BIASED JOSEPHSON JUNCTIONS (Ⅰ). Acta Physica Sinica, 1985, 34(9): 1140-1148. doi: 10.7498/aps.34.1140
Metrics
  • Abstract views:  423
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2025
  • Accepted Date:  23 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回