Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-hard magnetic and micro-mechanical behaviors of selective laser melting prepared AlCoCrCuFeNi high-entropy alloy

HU Xuzhao CHEN Xiangling XU Zhenlin ZHANG Dianbao LIU Jing XIA Ailin

Citation:

Semi-hard magnetic and micro-mechanical behaviors of selective laser melting prepared AlCoCrCuFeNi high-entropy alloy

HU Xuzhao, CHEN Xiangling, XU Zhenlin, ZHANG Dianbao, LIU Jing, XIA Ailin
cstr: 32037.14.aps.74.20250286
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnetic high-entropy alloy (HEA) has certain application prospects in the fields of energy conversion, hysteresis motor, electromagnetic control mechanism and others. In this study, AlCoCrCuFeNi HEA is prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior are studied systematically. The results show that the SLMed alloy mainly consists of a BCC matrix phase with a small quantity of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole sample shows excellent micromechanical properties. Besides, it is found that the room-temperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs is mainly controlled by dislocation motion, which is different from the results given by the traditional classical creep theory. Both of SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar quantity of ferromagnetic elements (Fe, Co and Ni). However, the coercivity increases from 1.72 to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effects of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further studying the optimization of comprehensive magnetic properties and the room temperature creep mechanism of SLMed high-entropy alloy.
      Corresponding author: XIA Ailin, alxia@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52272263).
    [1]

    严密, 彭晓领 2019 磁学基础与磁性材料 (杭州: 浙江大学出版社)第184页

    Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184

    [2]

    Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Mater. 116 63Google Scholar

    [3]

    Huang P K, Yeh J W, Shun T T, Chen S K 2004 Adv. Eng. Mater. 6 74Google Scholar

    [4]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [5]

    Cantor B 2014 Entropy 16 4749Google Scholar

    [6]

    Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Mater. 281 120421Google Scholar

    [7]

    Liu C, Zhang L C, Wang K, Wang L 2025 Acta Mater. 283 120526Google Scholar

    [8]

    Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H T 2024 J. Adv. Ceram. 13 780Google Scholar

    [9]

    Feltrin A C, Hedman D, Akhtar F 2024 J. Adv. Ceram. 13 1268Google Scholar

    [10]

    任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 67 046102Google Scholar

    Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 046102Google Scholar

    [11]

    陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601Google Scholar

    Cheng J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar

    [12]

    Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310Google Scholar

    [13]

    Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Mater. 254 118970Google Scholar

    [14]

    Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82Google Scholar

    [15]

    Zhang M, George E P, Gibeling J C 2021 Scr. Mater. 194 113633Google Scholar

    [16]

    Jo M G, Suh J Y, Kim M Y, Kim H J, Jung W S, Kim D I, Han H N 2022 Mater. Sci. Eng. , A 838 142748Google Scholar

    [17]

    Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Mater. Lett. 164 344Google Scholar

    [18]

    Liu C J, Gadelmeier C, Lu S L, Yeh J W, Yen H W, Gorsse S, Glatzel U, Yeh A C 2022 Acta Mater. 237 118188Google Scholar

    [19]

    Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Addit. Manuf. 28 766Google Scholar

    [20]

    李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 2024 材料工程

    Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002

    [21]

    Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 J. Alloys Compds. 889 161800Google Scholar

    [22]

    Zhang M, George E P, Gibeling J C 2021 Acta Mater. 218 117181Google Scholar

    [23]

    Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 J. Alloys Compds. 894 162380Google Scholar

    [24]

    Zhou J, Liao H, Chen H, Huang A 2021 J. Alloys Compds. 859 157851Google Scholar

    [25]

    Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 J. Alloys Compds. 784 195Google Scholar

    [26]

    Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Mater. Sci. Eng. , A 918 147469Google Scholar

    [27]

    Zhao Y, Guo Q, Ma Z, Yu L 2020 Mater. Sci. Eng., A 791 139735Google Scholar

    [28]

    Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Addit. Manuf. 71 103593Google Scholar

    [29]

    Özden M G, Freeman F S H B, Morley N A 2023 Adv. Eng. Mater. 25 2300597Google Scholar

    [30]

    Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 J. Alloys Compds. 1010 177740Google Scholar

    [31]

    Manzoni A M, Glatzel U 2019 Mater. Charact. 147 512Google Scholar

    [32]

    Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746Google Scholar

    [33]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [34]

    张尚洲, 李子福, 王瑞, 孙广宝, 刘国浩, 于鸿垚 2024 航空制造技术 67 14Google Scholar

    Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aeronaut. Manuf. Technol. 67 14Google Scholar

    [35]

    Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 J. Magn. Magn. Mater. 589 171506Google Scholar

    [36]

    Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1Google Scholar

    [37]

    Brück E H ed. 2017 Handbook of Magnetic Materials (Amsterdam: Elsevier) pp9–11

    [38]

    Tan X, Chen L, Lü M, Peng W, Xu H 2023 Materials 16 7222Google Scholar

    [39]

    徐震霖 2021 博士学位论文(马鞍山: 安徽工业大学)

    Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology

    [40]

    Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24Google Scholar

    [41]

    Poisl W H, Oliver W C, Fabes B D 1995 J. Mater. Res. 10 2024Google Scholar

    [42]

    Nabarro F R N, De Villiers F 2018 Physics of Creep and Creep-resistant Alloys (London: CRC Press) pp46–81

  • 图 1  SLM成形设备(a)、SLM工艺示意图(b), 以及SLM成形样品顶面实物图(c)

    Figure 1.  SLM equipment (a), schematic diagram of the SLM process (b), and the top-view physical picture of SLMed alloys (c).

    图 2  SLM成形态AlCoCrCuFeNi高熵合金在不同工艺参数下的孔隙率变化

    Figure 2.  Variation of porosity with laser power and scanning speed of the SLMed AlCoCrCuFeNi HEAs.

    图 3  不同工艺参数下制备的SLM成形态AlCoCrCuFeNi高熵合金的XRD图谱 (a) 激光扫描速率为1450 mm/s, 激光功率为110—150 W; (b) 激光功率为130 W, 激光扫描速率为1350—1550 mm/s

    Figure 3.  The XRD spectra of SLMed samples, (a) processed at 1450 mm/s laser scanning and different laser power (110–150 W), (b) processed at 130 W laser power and different (1350–1550 mm/s) laser scanning speed, respectively.

    图 4  SLM成形态试样的典型微观结构 (a), (b) SEM形貌图; (c), (d) TEM明场像图; (e), (f) 选区电子衍射图; (g)表示位错堆积和缠结的TEM明场像图

    Figure 4.  Typical microstructures of SLMed samples: (a), (b) SEM images; (c), (d) bright-field TEM images; (e), (f) the selective area electron diffraction; (g) TEM bright field image showing the dislocation pile up and entanglement.

    图 5  SLM成形态AlCoCrCuFeNi高熵合金在不同激光功率下的磁滞回线(a)(插图为局部放大图)和磁性参数(b)的变化规律

    Figure 5.  Hysteresis loops (a) and variation in Ms, Hc (b) of SLMed AlCoCrCuFeNi specimens at different power, respectively. The illustration is partial enlargement of panel (a)

    图 6  SLM成形态AlCoCrCuFeNi高熵合金在不同扫描速率下的磁滞回线(a) (插图为局部放大图)和磁性参数(b)的变化规律

    Figure 6.  Hysteresis loops (a) and the variation in Ms, Hc (b) of SLMed AlCoCrCuFeNi specimens at different scanning speed, respectively. The illustration is partial enlargement of panel (a)

    图 7  纳米压痕实验. 不同激光扫描速度(a)和激光功率(b)条件下打印态试样的压痕深度-载荷关系曲线

    Figure 7.  Nanoindentation test. The curves of load on surface vs. displacement into surface of printed samples with different P (a) and v (b).

    图 8  纳米压痕实验 (a)压痕深度和载荷关系曲线; (b)拟合蠕变曲线

    Figure 8.  Nanoindentation test: (a) Curve of load on surface vs. displacement into surface; (b) fitting creep curve.

    表 1  AlCoCrCuFeNi粉末的化学成分及各元素的特征参数

    Table 1.  Chemical compositions and element-characteristic parameters of the AlCoCrCuFeNi powders.

    Elements Al Co Cr Cu Fe Ni
    Mass fraction/% 8.85 18.86 16.59 20.28 17.25 18.11
    Density/(g·mm–3) 2.7 8.85 7.75 8.90 7.87 8.85
    Melting point/K 933 1770 2123 1356 1811 1728
    Average atomic/nm 0.1432 0.1363 0.1249 0.1280 0.1270 0.1240
    Structure FCC HCP BCC FCC BCC FCC
    VEC* 3 9 6 11 8 10
    *VEC—valence electron concentration.
    DownLoad: CSV

    表 2  SLM制备AlCoCrCuFeNi高熵合金的工艺参数

    Table 2.  Process parameters of fabricating AlCoCrCuFeNi HEAs using SLM technique.

    工艺参数 取值
    Laser thickness (t)/μm 40
    Laser power (P)/W 110—150
    Scan velocity (v)/(mm·s–1) 1350—1550
    Hatch spacing (h)/μm 50
    DownLoad: CSV

    表 3  不同激光功率(P)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数

    Table 3.  The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser power.

    P/W VBCC/% VFCC/% aBCC aFCC
    110 94.89 5.11 2.8709±0.0006 3.6100±0.0006
    120 94.38 5.62 2.8726±0.0017 3.6280±0.0007
    130 94.24 5.76 2.8752±0.0012 3.6289±0.0017
    140 93.41 6.59 2.8762±0.0011 3.6310±0.0023
    150 92.04 7.96 2.8763±0.0006 3.6367±0.0014
    DownLoad: CSV

    表 4  不同扫速(v)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数

    Table 4.  The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser scanning.

    v/(mm·s–1) VBCC/% VFCC/% aBCC aFCC
    1350 94.84 5.16 2.8840±0.0029 3.6460±0.0012
    1400 94.89 5.11 2.8825±0.0012 3.6289±0.0017
    1450 93.75 6.25 2.8810±0.0034 3.6430±0.0006
    1500 94.13 5.87 2.8773±0.0015 3.6358±0.0021
    1550 93.62 6.38 2.8737±0.0009 3.6297±0.0024
    DownLoad: CSV

    表 5  不同激光功率下合金的纳米压痕参数

    Table 5.  Nanoindentation of alloys at different laser power.

    P/W Hmax/nm Nano-hardness/GPa E/GPa
    110 321.5±13.8 8.8±0.9 202.3±8.4
    120 322.4±2.1 8.7±0.2 202.5±6.7
    130 323.2±13.6 8.7±0.8 208.9±15.6
    140 326.8±6.2 8.5±0.5 201.8±2.3
    150 332.3±8.4 8.2±0.5 203.8±5.0
    DownLoad: CSV

    表 6  不同激光扫描速度下合金的纳米压痕参数

    Table 6.  Nanoindentation of alloys at different laser scanning speed.

    v/(mm·s–1) Hmax/nm Nano-hardness/GPa E/GPa
    1350 331.0±6.3 8.2±0.4 199.2±10.9
    1400 323.2±13.6 8.7±0.8 208.9±15.6
    1450 322.3±3.8 8.8±0.2 201.7±8.6
    1500 338.7±8.5 7.7±0.4 197.0±7.7
    1550 332.3±8.4 8.1±0.5 193.3±5.0
    DownLoad: CSV
  • [1]

    严密, 彭晓领 2019 磁学基础与磁性材料 (杭州: 浙江大学出版社)第184页

    Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184

    [2]

    Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Mater. 116 63Google Scholar

    [3]

    Huang P K, Yeh J W, Shun T T, Chen S K 2004 Adv. Eng. Mater. 6 74Google Scholar

    [4]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [5]

    Cantor B 2014 Entropy 16 4749Google Scholar

    [6]

    Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Mater. 281 120421Google Scholar

    [7]

    Liu C, Zhang L C, Wang K, Wang L 2025 Acta Mater. 283 120526Google Scholar

    [8]

    Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H T 2024 J. Adv. Ceram. 13 780Google Scholar

    [9]

    Feltrin A C, Hedman D, Akhtar F 2024 J. Adv. Ceram. 13 1268Google Scholar

    [10]

    任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 67 046102Google Scholar

    Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 046102Google Scholar

    [11]

    陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601Google Scholar

    Cheng J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar

    [12]

    Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310Google Scholar

    [13]

    Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Mater. 254 118970Google Scholar

    [14]

    Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82Google Scholar

    [15]

    Zhang M, George E P, Gibeling J C 2021 Scr. Mater. 194 113633Google Scholar

    [16]

    Jo M G, Suh J Y, Kim M Y, Kim H J, Jung W S, Kim D I, Han H N 2022 Mater. Sci. Eng. , A 838 142748Google Scholar

    [17]

    Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Mater. Lett. 164 344Google Scholar

    [18]

    Liu C J, Gadelmeier C, Lu S L, Yeh J W, Yen H W, Gorsse S, Glatzel U, Yeh A C 2022 Acta Mater. 237 118188Google Scholar

    [19]

    Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Addit. Manuf. 28 766Google Scholar

    [20]

    李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 2024 材料工程

    Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002

    [21]

    Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 J. Alloys Compds. 889 161800Google Scholar

    [22]

    Zhang M, George E P, Gibeling J C 2021 Acta Mater. 218 117181Google Scholar

    [23]

    Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 J. Alloys Compds. 894 162380Google Scholar

    [24]

    Zhou J, Liao H, Chen H, Huang A 2021 J. Alloys Compds. 859 157851Google Scholar

    [25]

    Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 J. Alloys Compds. 784 195Google Scholar

    [26]

    Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Mater. Sci. Eng. , A 918 147469Google Scholar

    [27]

    Zhao Y, Guo Q, Ma Z, Yu L 2020 Mater. Sci. Eng., A 791 139735Google Scholar

    [28]

    Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Addit. Manuf. 71 103593Google Scholar

    [29]

    Özden M G, Freeman F S H B, Morley N A 2023 Adv. Eng. Mater. 25 2300597Google Scholar

    [30]

    Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 J. Alloys Compds. 1010 177740Google Scholar

    [31]

    Manzoni A M, Glatzel U 2019 Mater. Charact. 147 512Google Scholar

    [32]

    Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746Google Scholar

    [33]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [34]

    张尚洲, 李子福, 王瑞, 孙广宝, 刘国浩, 于鸿垚 2024 航空制造技术 67 14Google Scholar

    Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aeronaut. Manuf. Technol. 67 14Google Scholar

    [35]

    Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 J. Magn. Magn. Mater. 589 171506Google Scholar

    [36]

    Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1Google Scholar

    [37]

    Brück E H ed. 2017 Handbook of Magnetic Materials (Amsterdam: Elsevier) pp9–11

    [38]

    Tan X, Chen L, Lü M, Peng W, Xu H 2023 Materials 16 7222Google Scholar

    [39]

    徐震霖 2021 博士学位论文(马鞍山: 安徽工业大学)

    Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology

    [40]

    Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24Google Scholar

    [41]

    Poisl W H, Oliver W C, Fabes B D 1995 J. Mater. Res. 10 2024Google Scholar

    [42]

    Nabarro F R N, De Villiers F 2018 Physics of Creep and Creep-resistant Alloys (London: CRC Press) pp46–81

  • [1] BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang. Optimizing Microstructure and Mechanical Properties of CoCrFeNi High-Entropy Alloy Microfibers by Electric Current Treatment. Acta Physica Sinica, 2025, 74(13): . doi: 10.7498/aps.74.20250518
    [2] JIANG Xiaoyue, HUANG Zhimin, WANG Xuan, ZHANG Xiang, YANG Weiming, LIU Haishun. Effects of substrate temperature on crystallization of Fe-based amorphous alloy prepared by selective laser melting. Acta Physica Sinica, 2025, 74(1): 017501. doi: 10.7498/aps.74.20240662
    [3] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [4] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [5] Shi Fang-Jie, Li Nan, Guo Jun-Ming, Chen Bai-Yi, Li Sa-Teng, Liu Hao-Liang, Guo Jian-Ye, Li Qian-Wu, Li Ye-Fei, Xiao Bing. Monte-Carlo simulation of mass density field coupled dynamics for microstructural evolution of Fe-Cr binary alloys. Acta Physica Sinica, 2023, 72(13): 136401. doi: 10.7498/aps.72.20230291
    [6] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [7] An Min-Rong, Li Si-Lan, Su Meng-Jia, Deng Qiong, Song Hai-Yang. Molecular dynamics simulation of size dependent plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [8] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [9] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [10] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [11] Yang Jun-Sheng, Zhu Zi-Liang, Cao Qi-Long. Effect of pre-orientation on formation of microstructure of lamella crystal and the stress response of semicrystalline polymers: Molecular dynamics simulations. Acta Physica Sinica, 2020, 69(3): 038101. doi: 10.7498/aps.69.20191191
    [12] Lu Zhi-Wen, Zhong Zhi-Guo, Liu Ke-Tao, Song Hai-Zhen, Li Gen-Quan. First-principles calculations of microstructure and thermodynamic properties of the intermetallic compound in Ag-Mg-Zn alloy under high pressure and high temperature. Acta Physica Sinica, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [13] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [14] Tian Hui-Chen, Liu Li, Wen Yu-Hua. Shape changes and melting characteristics of cubic Pt nanoparticle:A molecular dynamics study. Acta Physica Sinica, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [15] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [16] Yang Sen, Su YunPeng, Huang Wei Dong, Zhou YaoHe. Microstructure characteristics of Cu31.4%Mn alloyunder laser rapid solidification condition. Acta Physica Sinica, 2003, 52(1): 81-86. doi: 10.7498/aps.52.81
    [17] SHAO YUAN-ZHI, XIONG ZHENG-YE, ZHANG JIE-LI, ZHANG JIN-XIU. CHARACTERISTICS IN MAGNETOCALORIC EFFECT AND MAGNETIC ENTROPY OF NANOMETER BINARY GADOLINIUM ALLOYS. Acta Physica Sinica, 1996, 45(10): 1749-1755. doi: 10.7498/aps.45.1749
    [18] DENG WEN, XIONG LIANG-YUE, LONG QI-WEI, WANG SHU-HE, GUO JIAN-TING. A MICROMECHANISM FOR B IMPROVING THE MECHANICAL PROPERTIES OF MONO- AND POLYCRYSTALLINE Ni3Al ALLOYS. Acta Physica Sinica, 1994, 43(1): 154-160. doi: 10.7498/aps.43.154
    [19] CHEN KUI-YING, LI QING-CHUN. MICRODYNAMICAL BEHAVIORS OF SUPERCOOLED LIQUID Mg-Ca ALLOY. Acta Physica Sinica, 1993, 42(9): 1491-1498. doi: 10.7498/aps.42.1491
    [20] NIE XIANG-FU, TANG GUI-DE, NIU XIOU-DE, HAN BAO-SHAN. FORMATION AND STATIC CHARACTERISTICS OF THREE KINDS OF HARD DOMAINS IN BUBBLE MATERIALS. Acta Physica Sinica, 1990, 39(2): 296-301. doi: 10.7498/aps.39.296
Metrics
  • Abstract views:  357
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2025
  • Accepted Date:  08 April 2025
  • Available Online:  19 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回