-
Continuous-variable quantum random number generator (cv-QRNG) has attracted much attention due to its convenient state preparation and high measurement bandwidth. Chip-size integration of this type of QRNG is expectable because all components involved have been integrated on a single chip recently. Most of the existing schemes, including all existing commercial schemes, usually use a once-and-for-all approach to evaluate quantum entropy. In this work, we propose a double-level parallel cv-QRNG scheme that integrates real-time phase-space monitoring and entropy evaluation. By using dynamic threshold monitoring and self-adapting scaling of Toeplitz matrix, the security and generation rate of QRNG can be enhanced simultaneously. Experimentally, a parallel extraction system of vacuum state double quadratures and multiple sideband modes is constructed based on heterodyne, providing sufficient raw data for high-precision and high-speed tomography reconstruction of quantum entropy source and parallel extraction of QRNG. Based on the statistical analysis of data under long-term stable operation of the system, dynamic KLD-sensitive security threshold for statistical distribution of Husimi-Q function of the entropy source is established. When a weak chaotic field is injected to simulate a thermal state attack, the KLD value jumps and quickly deviates from the steady state baseline, manifesting a sensitive identification of the attack. It is worth pointing out that the threshold parameter can be dynamically optimized according to the security requirements of actual application scenarios. An FPGA-based real-time feedback Toeplitz-hash extractor employs a maximum matrix bit-width truncation method to dynamically adjust Toeplitz matrix parameters. This optimization reduces the maximum extraction ratio interval from 6% to 1.8%, with all intervals below 1% for extraction ratios ≤76%, significantly mitigating entropy losses caused by discrete adjustment of the Toeplitz matrix, and achieving a minimum extraction ratio of 16.9%. This flexibility enables the system to accurately control the response sensitivity of abnormal signals while maintaining the real-time generation of quantum random bits. Finally, real-time generation rate of 17.512 Gbit/s is attained with security parameters at the level of 10–50 and the generated random numbers passed NIST SP 800-22, Diehard, and TestU01 standard tests. This research provides a technical path for real-time assessment of entropy source security in QRNG. The proposed scheme has good integrability and scalability, presenting a feasible solution for QRNG to enter the application stage. -
Keywords:
- quantum random number /
- continuous variable quantum state /
- quantum conditioned min-entropy /
- FPGA based real-time Toeplitz-hash postprocessing
[1] Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105
Google Scholar
[2] Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110
Google Scholar
[3] Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760
Google Scholar
[4] Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085
Google Scholar
[5] Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
Google Scholar
[6] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820
Google Scholar
[7] Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489
Google Scholar
[8] Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106
Google Scholar
[9] Wei W, Guo H 2009 Opt. Lett. 34 1876
Google Scholar
[10] Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106
Google Scholar
[11] Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137
Google Scholar
[12] Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730
Google Scholar
[13] Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056
Google Scholar
[14] Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625
Google Scholar
[15] Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814
Google Scholar
[16] Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103
Google Scholar
[17] Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330
Google Scholar
[18] Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605
Google Scholar
[19] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[20] Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711
Google Scholar
[21] Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819
Google Scholar
[22] Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004
Google Scholar
[23] Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566
Google Scholar
[24] Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259
Google Scholar
[25] Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105
Google Scholar
[26] Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452
Google Scholar
[27] Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548
Google Scholar
[28] Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25
Google Scholar
[29] Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68
Google Scholar
[30] Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020
Google Scholar
[31] Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024
Google Scholar
[32] Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017
Google Scholar
[33] Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1
Google Scholar
[34] Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503
Google Scholar
[35] Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013
Google Scholar
[36] Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021
Google Scholar
[37] Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524
Google Scholar
[38] Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048
Google Scholar
[39] Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422
Google Scholar
[40] Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101
Google Scholar
[41] Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606
Google Scholar
[42] Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209
Google Scholar
[43] Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141
Google Scholar
[44] Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244
Google Scholar
[45] Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601
Google Scholar
[46] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
Google Scholar
[47] Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365
Google Scholar
[48] Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803
Google Scholar
[49] Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13
[50] 任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601
Google Scholar
Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601
Google Scholar
[51] Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725
Google Scholar
[52] Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289
Google Scholar
[53] Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801
Google Scholar
[54] Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575
[55] Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317
[56] Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917
Google Scholar
[57] Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136
Google Scholar
[58] Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1
[59] Wu Y, Ma X 2022 Renew. Energy 181 554
Google Scholar
[60] Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159
Google Scholar
[61] Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108
Google Scholar
[62] Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556
Google Scholar
[63] Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299
Google Scholar
[64] Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044
Google Scholar
[65] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312
Google Scholar
[66] Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108
[67] Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28
Google Scholar
[68] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304
Google Scholar
[69] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333
Google Scholar
-
图 1 基于外差探测的多路并行实时熵评估QRNG实验方案, 其中TC为温控源, CS为电流源, LD为半导体激光器, VOA为衰减器, OPC为光学偏振器, BS1为80∶20分束器, Laser为激光源, BS2为 90∶10分束器, 90°Hybrid为90°光混频器, OPM为功率计, BHD为光电探测器, PS为功分器, M为混频器, AWG为信号发生器, LPF为滤波器, ADC为模数转换器, FPGA为现场可编程门阵列, PC为上位机
Figure 1. A multi-channel parallel real-time entropy evaluation QRNG experimental scheme based on heterodyne detection, where TC represents temperature-controlled source, CS represents current source, LD represents semiconductor laser, VOA represents attenuator, OPC represents optical polarizer, BS1 represents 80∶20 beam splitter, Laser represents laser source, BS2 represents 90∶10 beam splitter, 90° hybrid represents 90° optical mixer, OPM represents power meter, BHD represents photodetector, PS represents power divider, M represents mixer, AWG represents signal generator, LPF represents filter, ADC represents analog-to-digital converter, FPGA represents field programmable gate array, PC represents upper computer.
图 10 实验重构结果 (a) 不同本振功率下KLD随迭代次数的变化; (b) 迭代300次的Wigner分布; (c) 不同本振功率下KLD随截断值kc的变化图; (d) 截断值kc为4的Wigner分布; (e) HET中KLD随着本振功率变化; (f) HET重构的Husimi-Q分布
Figure 10. Experimental reconstruction results: (a) The variation of KLD with the number of iterations at different local oscillator powers; (b) Wigner distribution with 300 iterations; (c) Variation of KLD with kc at different local oscillator powers; (d) Wigner distribution with a cut-off value of kc of 4; (e) KLD in HET with local oscillator power; (f) Husimi-Q distribution reconstructed by HET.
表 1 不同通道的关键参数
Table 1. Structural parameters of capillary of different kind of fluid.
通道 条件最小熵
/(16 bit)矩阵规模
m × n后处理提
取比/%实时生
成速率
/(Gbit·s–1)X (300 MHz) 11.79 1729×2496 69.27 4.4334 P (300 MHz) 11.71 1729×2496 69.27 4.4334 X (800 MHz) 11.54 1729×2560 67.54 4.3226 P (800 MHz) 11.45 1729×2560 67.54 4.3226 -
[1] Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105
Google Scholar
[2] Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110
Google Scholar
[3] Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760
Google Scholar
[4] Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085
Google Scholar
[5] Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
Google Scholar
[6] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820
Google Scholar
[7] Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489
Google Scholar
[8] Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106
Google Scholar
[9] Wei W, Guo H 2009 Opt. Lett. 34 1876
Google Scholar
[10] Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106
Google Scholar
[11] Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137
Google Scholar
[12] Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730
Google Scholar
[13] Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056
Google Scholar
[14] Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625
Google Scholar
[15] Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814
Google Scholar
[16] Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103
Google Scholar
[17] Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330
Google Scholar
[18] Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605
Google Scholar
[19] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[20] Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711
Google Scholar
[21] Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819
Google Scholar
[22] Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004
Google Scholar
[23] Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566
Google Scholar
[24] Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259
Google Scholar
[25] Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105
Google Scholar
[26] Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452
Google Scholar
[27] Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548
Google Scholar
[28] Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25
Google Scholar
[29] Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68
Google Scholar
[30] Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020
Google Scholar
[31] Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024
Google Scholar
[32] Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017
Google Scholar
[33] Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1
Google Scholar
[34] Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503
Google Scholar
[35] Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013
Google Scholar
[36] Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021
Google Scholar
[37] Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524
Google Scholar
[38] Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048
Google Scholar
[39] Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422
Google Scholar
[40] Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101
Google Scholar
[41] Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606
Google Scholar
[42] Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209
Google Scholar
[43] Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141
Google Scholar
[44] Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244
Google Scholar
[45] Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601
Google Scholar
[46] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
Google Scholar
[47] Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365
Google Scholar
[48] Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803
Google Scholar
[49] Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13
[50] 任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601
Google Scholar
Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601
Google Scholar
[51] Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725
Google Scholar
[52] Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289
Google Scholar
[53] Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801
Google Scholar
[54] Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575
[55] Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317
[56] Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917
Google Scholar
[57] Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136
Google Scholar
[58] Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1
[59] Wu Y, Ma X 2022 Renew. Energy 181 554
Google Scholar
[60] Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159
Google Scholar
[61] Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108
Google Scholar
[62] Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556
Google Scholar
[63] Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299
Google Scholar
[64] Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044
Google Scholar
[65] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312
Google Scholar
[66] Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108
[67] Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28
Google Scholar
[68] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304
Google Scholar
[69] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333
Google Scholar
Catalog
Metrics
- Abstract views: 411
- PDF Downloads: 12
- Cited By: 0