Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Real-time entropy source evaluated dual-parallel continuous variable quantum random number generator

GUO Xiaomin WANG Qiqi LUO Yue SONG Zhijie LI Zhengya QU Yikun GUO Yanqiang XIAO Liantuan

Citation:

Real-time entropy source evaluated dual-parallel continuous variable quantum random number generator

GUO Xiaomin, WANG Qiqi, LUO Yue, SONG Zhijie, LI Zhengya, QU Yikun, GUO Yanqiang, XIAO Liantuan
cstr: 32037.14.aps.74.20250333
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Continuous-variable quantum random number generator (cv-QRNG) has attracted much attention due to its convenient state preparation and high measurement bandwidth. Chip-size integration of this type of QRNG is expectable because all components involved have been integrated on a single chip recently. Most of the existing schemes, including all existing commercial schemes, usually use a once-and-for-all approach to evaluate quantum entropy. In this work, we propose a double-level parallel cv-QRNG scheme that integrates real-time phase-space monitoring and entropy evaluation. By using dynamic threshold monitoring and self-adapting scaling of Toeplitz matrix, the security and generation rate of QRNG can be enhanced simultaneously.Experimentally, a parallel extraction system of vacuum state double quadratures and multiple sideband modes is constructed based on heterodyne, providing sufficient raw data for high-precision and high-speed tomography reconstruction of quantum entropy source and parallel extraction of QRNG. Based on the statistical analysis of data under long-term stable operation of the system, dynamic KLD-sensitive security threshold for statistical distribution of Husimi-Q function of the entropy source is established. When a weak chaotic field is injected to simulate a thermal state attack, the KLD value jumps and quickly deviates from the steady state baseline, manifesting a sensitive identification of the attack. It is worth pointing out that the threshold parameter can be dynamically optimized according to the security requirements of actual application scenarios. An FPGA-based real-time feedback Toeplitz-hash extractor employs a maximum matrix bit-width truncation method to dynamically adjust Toeplitz matrix parameters. This optimization reduces the maximum extraction ratio interval from 6% to 1.8%, with all intervals below 1% for extraction ratios 76%, significantly mitigating entropy losses caused by discrete adjustment of the Toeplitz matrix, and achieving a minimum extraction ratio of 16.9%. This flexibility enables the system to accurately control the response sensitivity of abnormal signals while maintaining the real-time generation of quantum random bits. Finally, real-time generation rate of 17.512 Gbit/s is attained with security parameters at the level of 10–50 and the generated random numbers passed NIST SP 800-22, Diehard, and TestU01 standard tests.This research provides a technical path for real-time assessment of entropy source security in QRNG. The proposed scheme has good integrability and scalability, presenting a feasible solution for QRNG to enter the application stage.
      Corresponding author: GUO Yanqiang, guoyanqiang@tyut.edu.cn ; XIAO Liantuan, xlt@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant Nos. 62475185, 62175176, U23A20380), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021221034).
    [1]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105Google Scholar

    [2]

    Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110Google Scholar

    [3]

    Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760Google Scholar

    [4]

    Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085Google Scholar

    [5]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675Google Scholar

    [6]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820Google Scholar

    [7]

    Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489Google Scholar

    [8]

    Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106Google Scholar

    [9]

    Wei W, Guo H 2009 Opt. Lett. 34 1876Google Scholar

    [10]

    Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106Google Scholar

    [11]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137Google Scholar

    [12]

    Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730Google Scholar

    [13]

    Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056Google Scholar

    [14]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [15]

    Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814Google Scholar

    [16]

    Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103Google Scholar

    [17]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330Google Scholar

    [18]

    Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605Google Scholar

    [19]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [20]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711Google Scholar

    [21]

    Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819Google Scholar

    [22]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004Google Scholar

    [23]

    Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566Google Scholar

    [24]

    Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259Google Scholar

    [25]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105Google Scholar

    [26]

    Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452Google Scholar

    [27]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [28]

    Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25Google Scholar

    [29]

    Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68Google Scholar

    [30]

    Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020Google Scholar

    [31]

    Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024Google Scholar

    [32]

    Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017Google Scholar

    [33]

    Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1Google Scholar

    [34]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503Google Scholar

    [35]

    Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013Google Scholar

    [36]

    Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021Google Scholar

    [37]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [38]

    Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048Google Scholar

    [39]

    Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422Google Scholar

    [40]

    Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101Google Scholar

    [41]

    Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606Google Scholar

    [42]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209Google Scholar

    [43]

    Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141Google Scholar

    [44]

    Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244Google Scholar

    [45]

    Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601Google Scholar

    [46]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [47]

    Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365Google Scholar

    [48]

    Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803Google Scholar

    [49]

    Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13

    [50]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [51]

    Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725Google Scholar

    [52]

    Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289Google Scholar

    [53]

    Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801Google Scholar

    [54]

    Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575

    [55]

    Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317

    [56]

    Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917Google Scholar

    [57]

    Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136Google Scholar

    [58]

    Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1

    [59]

    Wu Y, Ma X 2022 Renew. Energy 181 554Google Scholar

    [60]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159Google Scholar

    [61]

    Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108Google Scholar

    [62]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556Google Scholar

    [63]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [64]

    Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044Google Scholar

    [65]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [66]

    Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108

    [67]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [68]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [69]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333Google Scholar

  • 图 1  基于外差探测的多路并行实时熵评估QRNG实验方案, 其中TC为温控源, CS为电流源, LD为半导体激光器, VOA为衰减器, OPC为光学偏振器, BS1为80∶20分束器, Laser为激光源, BS2为 90∶10分束器, 90°Hybrid为90°光混频器, OPM为功率计, BHD为光电探测器, PS为功分器, M为混频器, AWG为信号发生器, LPF为滤波器, ADC为模数转换器, FPGA为现场可编程门阵列, PC为上位机

    Figure 1.  A multi-channel parallel real-time entropy evaluation QRNG experimental scheme based on heterodyne detection, where TC represents temperature-controlled source, CS represents current source, LD represents semiconductor laser, VOA represents attenuator, OPC represents optical polarizer, BS1 represents 80∶20 beam splitter, Laser represents laser source, BS2 represents 90∶10 beam splitter, 90° hybrid represents 90° optical mixer, OPM represents power meter, BHD represents photodetector, PS represents power divider, M represents mixer, AWG represents signal generator, LPF represents filter, ADC represents analog-to-digital converter, FPGA represents field programmable gate array, PC represents upper computer.

    图 2  真空态双分量散粒噪声功率谱图

    Figure 2.  Vacuum-state two-component shot noise power spectrum.

    图 3  后处理与熵反馈模块示意图

    Figure 3.  Schematic diagram of the post-processing and entropy feedback module.

    图 4  标准NIST统计套件测试结果

    Figure 4.  Standard NIST statistical suite test results.

    图 5  (a) TestU01测试结果; (b) Diehard测试结果

    Figure 5.  (a) Test results of TestU01; (b) test results of Diehard.

    图 6  不同探测效率下层析精度变化曲面图 (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1

    Figure 6.  Performance ratio surface plot for different detection efficiency: (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1.

    图 7  不同探测效率下层析精度变化曲面图(考虑Arthurs-Kelly误差) (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1

    Figure 7.  Performance ratio surface plot considering Arthurs-Kelly error with different detection efficiency: (a) η = 0.1; (b) η = 0.5; (c) η = 0.72; (d) η = 1.

    图 8  不同效率下的性能比与光子数的关系

    Figure 8.  Relationship between performance ratio and number of photons at different efficiencies.

    图 9  信号方差随本振光功率的变化

    Figure 9.  Relationship of signal variance with local oscillator optical power.

    图 10  实验重构结果 (a) 不同本振功率下KLD随迭代次数的变化; (b) 迭代300次的Wigner分布; (c) 不同本振功率下KLD随截断值kc的变化图; (d) 截断值kc为4的Wigner分布; (e) HET中KLD随着本振功率变化; (f) HET重构的Husimi-Q分布

    Figure 10.  Experimental reconstruction results: (a) The variation of KLD with the number of iterations at different local oscillator powers; (b) Wigner distribution with 300 iterations; (c) Variation of KLD with kc at different local oscillator powers; (d) Wigner distribution with a cut-off value of kc of 4; (e) KLD in HET with local oscillator power; (f) Husimi-Q distribution reconstructed by HET.

    图 11  不同数据量下3种重构方法的KLD值

    Figure 11.  The KLD value of the three reconstruction methods under different sample sizes.

    图 12  (a) 热态攻击前后的Husimi-Q 分布, 其中网格化曲线对应真空态, 彩色直方图对应热态; (b) 热态攻击前后的KLD波动图

    Figure 12.  (a) Husimi-Q distribution before and after a thermal attack, where gridded curve corresponds to vacuum state, color histogram corresponds to hot state; (b) KLD fluctuation plot before and after thermal attack.

    图 13  最小熵与QSNR关系图

    Figure 13.  Graph of minimum entropy versus quantum signal-to-noise ratio.

    图 14  后处理矩阵调整流程示意图

    Figure 14.  Schematic diagram of the post-processing matrix adjustment process.

    图 15  可变的矩阵规模硬件实现方法

    Figure 15.  Variable matrix size implementation.

    图 16  (a) 矩阵步长为128时的后处理离散提取比例; (b) 矩阵步长为32时的后处理离散提取比例

    Figure 16.  (a) Post-processing discrete extraction ratio at matrix step size of 128; (b) post-processing discrete extraction ratio at matrix step size of 32.

    表 1  不同通道的关键参数

    Table 1.  Structural parameters of capillary of different kind of fluid.

    通道 条件最小熵
    /(16 bit)
    矩阵规模
    m × n
    后处理提
    取比/%
    实时生
    成速率
    /(Gbit·s–1)
    X (300 MHz) 11.79 1729×2496 69.27 4.4334
    P (300 MHz) 11.71 1729×2496 69.27 4.4334
    X (800 MHz) 11.54 1729×2560 67.54 4.3226
    P (800 MHz) 11.45 1729×2560 67.54 4.3226
    DownLoad: CSV
  • [1]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105Google Scholar

    [2]

    Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110Google Scholar

    [3]

    Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760Google Scholar

    [4]

    Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085Google Scholar

    [5]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675Google Scholar

    [6]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820Google Scholar

    [7]

    Xiao L T, Zhao Y T, Huang T, Zhao J M, Yin W B, Jia S T 2004 Chin. Phys. Lett. 21 489Google Scholar

    [8]

    Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106Google Scholar

    [9]

    Wei W, Guo H 2009 Opt. Lett. 34 1876Google Scholar

    [10]

    Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106Google Scholar

    [11]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137Google Scholar

    [12]

    Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730Google Scholar

    [13]

    Li J L, Huang Z T, Yu C L, Wu J J, Zhao T G, Zhu X W, Sun S H 2024 Opt. Express 32 5056Google Scholar

    [14]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [15]

    Shen Y, Tian L, Zou H X 2010 Phys. Rev. A 81 063814Google Scholar

    [16]

    Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103Google Scholar

    [17]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330Google Scholar

    [18]

    Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605Google Scholar

    [19]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [20]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711Google Scholar

    [21]

    Guo X M, Liu R, Li P, Cheng C, Wu M, Guo Y Q 2018 Entropy 20 819Google Scholar

    [22]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004Google Scholar

    [23]

    Guo X M, Cheng C, Wu M C, Gao Q Z, Li P, Guo Y Q 2019 Opt. Lett. 44 5566Google Scholar

    [24]

    Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259Google Scholar

    [25]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105Google Scholar

    [26]

    Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452Google Scholar

    [27]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [28]

    Zhang J F, Li Y, Zhao M Y, Han D M, Liu J, Wang M H, Gong Q H, Xiang Y, He Q Y, Su X L 2025 Light Sci. Appl. 14 25Google Scholar

    [29]

    Liu L J, Yang J, Wu M, Liu J L, Huang W, Li Y, Xu B J 2025 Entropy 27 68Google Scholar

    [30]

    Cao Z, Zhou H Y, Yuan X, Ma X F 2016 Phys. Rev. X 6 011020Google Scholar

    [31]

    Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024Google Scholar

    [32]

    Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017Google Scholar

    [33]

    Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1Google Scholar

    [34]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503Google Scholar

    [35]

    Xu B J, Chen Z Y, Li Z Y, Yang J, Su Q, Huang W, Zhang Y C, Guo H 2019 Quantum Sci. Technol. 4 025013Google Scholar

    [36]

    Ma X F, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf. 2 16021Google Scholar

    [37]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [38]

    Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048Google Scholar

    [39]

    Huang W N, Zhang Y C, Zheng Z Y, Li Y, Xu B J, Yu S 2020 Phys. Rev. A 102 012422Google Scholar

    [40]

    Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109 041101Google Scholar

    [41]

    Lin F D, Ge W B, Song Z J, Cui X X, Guo Y Q, Guo X M, Xiao L T 2024 J. Lightwave Technol. 42 8606Google Scholar

    [42]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209Google Scholar

    [43]

    Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141Google Scholar

    [44]

    Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244Google Scholar

    [45]

    Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601Google Scholar

    [46]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [47]

    Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365Google Scholar

    [48]

    Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803Google Scholar

    [49]

    Chaudhuri A 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13

    [50]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [51]

    Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725Google Scholar

    [52]

    Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 12289Google Scholar

    [53]

    Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801Google Scholar

    [54]

    Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1–575

    [55]

    Hershey J R, Olsen P A 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07 Honolulu, HI, USA, April 15–20, 2007 pIV-317

    [56]

    Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917Google Scholar

    [57]

    Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136Google Scholar

    [58]

    Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 2016 1

    [59]

    Wu Y, Ma X 2022 Renew. Energy 181 554Google Scholar

    [60]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159Google Scholar

    [61]

    Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108Google Scholar

    [62]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556Google Scholar

    [63]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [64]

    Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044Google Scholar

    [65]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [66]

    Xia X, Sun J, Liu W 2023 5th International Conference on Circuits and Systems (ICCS) Huzhou, China, October 27–30, 2023 p108

    [67]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [68]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [69]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333Google Scholar

  • [1] LIAO Qin, FEI Zhuo-Ying, WANG Yi-Jun. Continuous-variable quantum secret sharing with local local oscillator based on Kalman filter. Acta Physica Sinica, 2025, 74(16): . doi: 10.7498/aps.74.20250227
    [2] SUN Xin, GUO Junjie, CHEN Yujie, CHENG Jin, LIU Ao, LIU Wenbo, YIN Peng, CHEN Lanjian, WU Tianyi, DONG Chen. Feasibility analysis study of discrete modulation continuous variable quantum key distribution for spatial channels. Acta Physica Sinica, 2025, 74(9): 090303. doi: 10.7498/aps.74.20241682
    [3] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [4] Wu Xiao-Dong, Huang Duan. Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. Acta Physica Sinica, 2024, 73(21): 210302. doi: 10.7498/aps.73.20240804
    [5] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [6] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [7] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [8] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [9] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [10] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [11] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [12] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [13] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [14] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [15] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [16] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [18] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] Zhai Ze-Hui, Li Yong-Ming, Wang Shao-Kai, Guo Juan, Zhang Tian-Cai, Gao Jiang-Rui. Experimental study of continuous-variable quantum teleportation. Acta Physica Sinica, 2005, 54(6): 2710-2716. doi: 10.7498/aps.54.2710
Metrics
  • Abstract views:  411
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2025
  • Accepted Date:  16 April 2025
  • Available Online:  17 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回