-
Recent years have witnessed intensified efforts in utilizing spoof surface acoustic waves (SSAWs) to enable subwavelength-scale modulation. However, obstacles along the transmission path typically induce strong scattering of SSAWs, limiting their practical applications such as communications. In this paper, we propose a new type of acoustic metasurface that supports the SSAWs’ propagation on both sides and design an acoustic stealth device based on such a metasurface. This metasurface is composed of periodically arranged Helmholtz resonators with bidirectional apertures, whose unique structure enables the interlayer transitions of SSAWs between the top and bottom surfaces. Remarkably, the overall thickness of the structure is only 1/20 of the incident wavelength, demonstrating significant subwavelength characteristics. We calculate theoretically the dispersion curve of the SSAWs, establishing the dependence between the propagation wave vector and the structural parameters. By optimizing the structural parameters of the double-sided metasurface, the wave vector matching during propagation is ensured, thereby achieving efficient transitions with minimal losses between the top and bottom surfaces. We construct a “sound-transparent path” via numerical simulations that allows waves to bypass obstacles without scattering, and demonstrate that thermoviscous effects exert negligible influence on transmission efficiency. Furthermore, an experiment is carried out to validate this metasurface’s dual-sided wave-manipulation capability, which demonstrates that the SSAWs maintain its wavefront during interfacial propagation, showing excellent robustness against large-sized obstacles. The proposed stealth device offers notable advantages, including a lightweight structure and high flexibility, providing new research perspectives and technical pathways for the manipulation of SSAWs and the design of acoustic devices at deep subwavelength scales.
-
Keywords:
- Double-sided metasurface /
- Spoof surface acoustic wave /
- Dual-sided acoustic manipulation /
- Acoustic cloaking
-
[1] Li H X, Liang B, Cheng J C 2022 Sci. Sinica-Phys. Mech. Astron. 52 244302 (李澔翔, 梁彬, 程建春 2022中国科学:物理学 力学 天文学 52 244302)
[2] Li H X, ROSENDO-LóPEZ M A, ZHU Y F, Fan X D, Torrent D, Liang B, Cheng J C, Christensen J 2019 Research 2019 8345683
[3] Lasri O, Sirota L 2023 Appl. Phys. Lett. 123 032201
[4] Hu J, Liang B, Qiu X J 2019 Appl. Phys. Express 12 27002
[5] Hu J, Wang H Z 2020 Appl. Acoust. 39 799-803 (胡洁, 王昊泽2020 应用声学 39 799-803)
[6] Chen Z X, Peng Y G, Li H X, Liu J J, Ding Y J, Liang B, Zhu X F, Lu Y Q, Cheng J C, Alù A 2021 Sci. Adv. 7 eabj1198
[7] Gu Z M, Fang X S, Liu T, Gao H, Liang S J, Li Y, Liang B, Cheng J C, Zhu J 2021 Appl. Phys. Lett. 118 113501
[8] Wu K, Tan Y, Liu J J, Liang B, Cheng J C. 2025 Sci. China-Phys. Mech. Astron. 68 254304
[9] Jia Y R, Liu Y M, Hu B L, Xiong W, Bai Y C, Cheng Y, Wu D J, Liu X J, Christensen J 2022 Adv. Mater. 34 2202026
[10] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202
[11] Yue Z C, Zhang Z W, Wang H X, Xiong W, Cheng Y, Liu X J 2022 New J. Phys. 24 053009
[12] Wu H W, Quan J Q, Yin Y Q, Sheng Z Q 2020 J. Phys. D: Appl. Phys. 53 455101
[13] Zheng Y, Liang S J, Fan H Y, An S W, Gu Z M, Gao H, Liu T, Zhu J 2022 JASA express lett. 2 024004
[14] Liu T, Chen F, Liang S J, Gao H, Zhu J 2019 Phys. Rev. Appl. 11 034061
[15] Liu J J, Liang B, Cheng J C. 2021 Phys. Rev. Appl. 15 014015
[16] Li H X, Liu J J, Chen Z X, Wu K, Liang B, Yang J, Cheng J C, Christensen J 2023 Nat. Commun. 14 7633
[17] Hirsch T M F, Mauranyapin N P, Romero E, Jin X, Harris G, Baker C G, Bowen W P 2024 Appl. Phys. Lett. 124 013504
[18] Dai H Q, Liu L B, Xia B Z, Yu D J 2021 Phys. Rev. Appl. 15 064032
[19] Zhu Z J, Hu N, Wu J Y, Li W X, Zhao J B, Wang M F, Zeng F Z, Dai H J, Zheng Y J 2022 Front. Phys. 10 1068833
[20] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
[21] Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 050701 (胥守振, 谢实梦, 吴丹, 迟子惠, 黄林2022 物理学报 71 050701)
[22] Wu W H, Yang P F, Zhai W, Wei B B 2019 Chinese Phys. Lett. 36 084302
[23] Li P Q, Li Z L, Zhou W, Wang S W, Meng L, Peng Y G, Chen Z, Zheng H R, Zhu X F 2022 Adv. Funct. Mater. 32 2203109
[24] Zeng L S, Lin Z B, Li Z L,Yang Y, Hu Y, Chen Z, Peng Y G, Ma T, Zheng H R, Zhu X F 2025 Adv. Mater. 2025 202420229
[25] Yang X, Zhang Z H, Xu M W, Li S X, Zhang Y H, Zhu X F, Ouyang X P, Alù A 2024 Nat. Commun. 15 4346
[26] Zhao C Y, Wu K, Liu J J, Liang B, Cheng J C 2025 Phys. Rev. Appl. 23 034053
[27] Chen A, Xia Y F, Chen Z X, Su H J, Liu J J, Yang J, Zhu X F, Liang B, Cheng J C 2025 Adv. Funct. Mater. 202425833
Metrics
- Abstract views: 92
- PDF Downloads: 3
- Cited By: 0