-
In recent years, people have increased their efforts to use spoof surface acoustic waves (SSAWs) to achieve subwavelength-scale modulation. However, obstacles on the transmission path often cause strong scattering of SSAWs, which limits their practical applications in communications and other fields. In this paper, we propose a new type of acoustic metasurface that supports the SSAWs’ propagation on both sides and design an acoustic stealth device based on such a metasurface. This metasurface is composed of periodically arranged Helmholtz resonators with bidirectional apertures, whose unique structure enables SSAWs to achieve interlayer transitions between the top surface and bottom surface. Remarkably, the total thickness of the structure is only 1/20 of the incident wavelength, exhibiting obvious subwavelength characteristics. We theoretically calculate the dispersion curve of SSAWs, and establish the dependency relationship between the propagation wave vector and the structural parameters. By optimizing the structural parameters of the double-sided metasurface, the wave vector matching during propagation is ensured, thereby achieving efficient transitions with minimal losses between the top and bottom surfaces. We construct a “sound-transparent path” through numerical simulations, allowing waves to bypass obstacles without scattering, and demonstrate that thermoviscous effects exert a negligible influence on transmission efficiency. Furthermore, an experiment is carried out to validate this metasurface’s dual-sided wave-manipulation capability, which demonstrates that the SSAWs maintain their wavefronts during interfacial propagation, showing excellent robustness against large-sized obstacles. The proposed stealth device possesses notable advantages, including a lightweight structure and high flexibility, providing new research perspectives and technical pathways for manipulating SSAWs and designing acoustic devices on a deep subwavelength scale.
-
Keywords:
- double-sided metasurface /
- spoof surface acoustic wave /
- dual-sided acoustic manipulation /
- acoustic cloaking
[1] 李澔翔, 梁彬, 程建春 2022 中国科学: 物理学 力学 天文学 52 244302
Google Scholar
Li H X, Liang B, Cheng J C 2022 Sci. Sin. -Phys. Mech. Astron. 52 244302
Google Scholar
[2] Li H X, Rosendo-LóPEZ M A, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C, Christensen J 2019 Research 2019 8345683
Google Scholar
[3] Lasri O, Sirota L 2023 Appl. Phys. Lett. 123 032201
Google Scholar
[4] Hu J, Liang B, Qiu X J 2019 Appl. Phys. Express 12 27002
Google Scholar
[5] 胡洁, 王昊泽 2020 应用声学 39 799
Google Scholar
Hu J, Wang H Z 2020 Appl. Acoust. 39 799
Google Scholar
[6] Chen Z X, Peng Y G, Li H X, Liu J J, Ding Y J, Liang B, Zhu X F, Lu Y Q, Cheng J C, Alù A 2021 Sci. Adv. 7 eabj1198
Google Scholar
[7] Gu Z M, Fang X S, Liu T, Gao H, Liang S J, Li Y, Liang B, Cheng J C, Zhu J 2021 Appl. Phys. Lett. 118 113501
Google Scholar
[8] Wu K, Tan Y, Liu J J, Liang B, Cheng J C 2025 Sci. China-Phys. Mech. Astron. 68 254304
Google Scholar
[9] Jia Y R, Liu Y M, Hu B L, Xiong W, Bai Y C, Cheng Y, Wu D J, Liu X J, Christensen J 2022 Adv. Mater. 34 2202026
Google Scholar
[10] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202
Google Scholar
[11] Yue Z C, Zhang Z W, Wang H X, Xiong W, Cheng Y, Liu X J 2022 New J. Phys. 24 053009
Google Scholar
[12] Wu H W, Quan J Q, Yin Y Q, Sheng Z Q 2020 J. Phys. D: Appl. Phys. 53 455101
Google Scholar
[13] Zheng Y, Liang S J, Fan H Y, An S W, Gu Z M, Gao H, Liu T, Zhu J 2022 JASA Express Lett. 2 024004
Google Scholar
[14] Liu T, Chen F, Liang S J, Gao H, Zhu J 2019 Phys. Rev. Appl. 11 034061
Google Scholar
[15] Liu J J, Liang B, Cheng J C 2021 Phys. Rev. Appl. 15 014015
Google Scholar
[16] Li H X, Liu J J, Chen Z X, Wu K, Liang B, Yang J, Cheng J C, Christensen J 2023 Nat. Commun. 14 7633
Google Scholar
[17] Hirsch T M F, Mauranyapin N P, Romero E, Jin X, Harris G, Baker C G, Bowen W P 2024 Appl. Phys. Lett. 124 013504
Google Scholar
[18] Dai H Q, Liu L B, Xia B Z, Yu D J 2021 Phys. Rev. Appl. 15 064032
Google Scholar
[19] Zhu Z J, Hu N, Wu J Y, Li W X, Zhao J B, Wang M F, Zeng F Z, Dai H J, Zheng Y J 2022 Front. Phys. 10 1068833
Google Scholar
[20] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
Google Scholar
[21] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林 2022 物理学报 71 050701
Google Scholar
Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 050701
Google Scholar
[22] Wu W H, Yang P F, Zhai W, Wei B B 2019 Chin. Phys. Lett. 36 084302
Google Scholar
[23] Li P Q, Li Z L, Zhou W, Wang S W, Meng L, Peng Y G, Chen Z, Zheng H R, Zhu X F 2022 Adv. Funct. Mater. 32 2203109
Google Scholar
[24] Zeng L S, Lin Z B, Li Z L, Yang Y, Hu Y, Chen Z, Peng Y G, Ma T, Zheng H R, Zhu X F 2025 Adv. Mater. 37 202420229
Google Scholar
[25] Yang X, Zhang Z H, Xu M W, Li S X, Zhang Y H, Zhu X F, Ouyang X P, Alù A 2024 Nat. Commun. 15 4346
Google Scholar
[26] Zhao C Y, Wu K, Liu J J, Liang B, Cheng J C 2025 Phys. Rev. Appl. 23 034053
Google Scholar
[27] Chen A, Xia Y F, Chen Z X, Su H J, Liu J J, Yang J, Zhu X F, Liang B, Cheng J C 2025 Adv. Funct. Mater. 35 202425833
Google Scholar
-
图 2 不同内腔边长w和上下孔径D1和D2的双层超表面所承载伪表面波模式的色散曲线(右下角插图为4种双层超表面的结构单元示意图) (a) w = 1.6703 cm, D1-1 = 0.16 cm, D2-1 = 0.04 cm; (b) w = 1.6092 cm, D1-2 = 0.12 cm, D2-2 = 0.08 cm; (c) w = 1.6092 cm, D1-3 = 0.08 cm, D2-3 = 0.12 cm; (d) w = 1.6703 cm, D1-4 = 0.04 cm, D2-4 = 0.16 cm; 红星代表工作频率为3000 Hz, 对应的传播波数为kx = 78.54 m–1
Figure 2. Dispersion curves of the spoof surface acoustic waves (SSAWs) supported by the double-layer metasurface with different inner cavity side length w and aperture diameters D1, D2: (a) w = 1.6703 cm, D1-1 = 0.16 cm, D2-1 = 0.04 cm; (b) w = 1.6092 cm, D1-2 = 0.12 cm, D2-2 = 0.08 cm; (c) w = 1.6092 cm, D1-3 = 0.08 cm, D2-3 = 0.12 cm; (d) w = 1.6703 cm, D1-4 = 0.04 cm, D2-4 = 0.16 cm. The red star indicates the operating frequency of 3000 Hz, corresponding to a propagation wavenumber of kx = 78.54 m–1.
图 3 有无双层超表面下的声压场分 (a) 双层/单层共振人工单元上下两侧的声场分布结果; (b)存在热黏性损耗下伪表面波的色散关系计算结果; (c)有无双层超表面情况下的伪表面波透射率对比图黏滞
Figure 3. Sound pressure distributions of the spoof surface acoustic waves with/without the double-sided metasurface: (a) Sound field distribution of the upper and lower sides of the double-layer/single-layer artificial units; (b) dispersion relation of spoof surface acoustic waves in the presence of the thermal and viscous losses; (c) comparison diagram of spoof surface acoustic wave transmission with and without double-layer metasurface.
图 5 (a)实验装置图; (b)超表面正面声振幅测量结果; (c)超表面正面声相位测量结果; (d)超表面反面声振幅测量结果; (e)超表面反面声相位测量结果
Figure 5. (a) Experimental setup and device model; (b) measured acoustic amplitude distribution on the front side of the metasurface; (c) measured acoustic phase distribution on the front side of the metasurface; (d) measured acoustic amplitude distribution on the back side of the metasurface; (e) measured acoustic phase distribution on the back side of the metasurface.
表 1 双面超表面单元的结构参数
Table 1. Structure parameters of the unit of the double-sided acoustic metasurface.
结构 边长
w/cm孔径
D1/cm孔径
D2/cm高度
h/cm周期
a/cm深度
t/cm1 1.67 0.16 0.04 0.5 2 0.3 2 1.61 0.12 0.08 0.5 2 0.3 3 1.61 0.08 0.12 0.5 2 0.3 4 1.67 0.04 0.16 0.5 2 0.3 -
[1] 李澔翔, 梁彬, 程建春 2022 中国科学: 物理学 力学 天文学 52 244302
Google Scholar
Li H X, Liang B, Cheng J C 2022 Sci. Sin. -Phys. Mech. Astron. 52 244302
Google Scholar
[2] Li H X, Rosendo-LóPEZ M A, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C, Christensen J 2019 Research 2019 8345683
Google Scholar
[3] Lasri O, Sirota L 2023 Appl. Phys. Lett. 123 032201
Google Scholar
[4] Hu J, Liang B, Qiu X J 2019 Appl. Phys. Express 12 27002
Google Scholar
[5] 胡洁, 王昊泽 2020 应用声学 39 799
Google Scholar
Hu J, Wang H Z 2020 Appl. Acoust. 39 799
Google Scholar
[6] Chen Z X, Peng Y G, Li H X, Liu J J, Ding Y J, Liang B, Zhu X F, Lu Y Q, Cheng J C, Alù A 2021 Sci. Adv. 7 eabj1198
Google Scholar
[7] Gu Z M, Fang X S, Liu T, Gao H, Liang S J, Li Y, Liang B, Cheng J C, Zhu J 2021 Appl. Phys. Lett. 118 113501
Google Scholar
[8] Wu K, Tan Y, Liu J J, Liang B, Cheng J C 2025 Sci. China-Phys. Mech. Astron. 68 254304
Google Scholar
[9] Jia Y R, Liu Y M, Hu B L, Xiong W, Bai Y C, Cheng Y, Wu D J, Liu X J, Christensen J 2022 Adv. Mater. 34 2202026
Google Scholar
[10] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202
Google Scholar
[11] Yue Z C, Zhang Z W, Wang H X, Xiong W, Cheng Y, Liu X J 2022 New J. Phys. 24 053009
Google Scholar
[12] Wu H W, Quan J Q, Yin Y Q, Sheng Z Q 2020 J. Phys. D: Appl. Phys. 53 455101
Google Scholar
[13] Zheng Y, Liang S J, Fan H Y, An S W, Gu Z M, Gao H, Liu T, Zhu J 2022 JASA Express Lett. 2 024004
Google Scholar
[14] Liu T, Chen F, Liang S J, Gao H, Zhu J 2019 Phys. Rev. Appl. 11 034061
Google Scholar
[15] Liu J J, Liang B, Cheng J C 2021 Phys. Rev. Appl. 15 014015
Google Scholar
[16] Li H X, Liu J J, Chen Z X, Wu K, Liang B, Yang J, Cheng J C, Christensen J 2023 Nat. Commun. 14 7633
Google Scholar
[17] Hirsch T M F, Mauranyapin N P, Romero E, Jin X, Harris G, Baker C G, Bowen W P 2024 Appl. Phys. Lett. 124 013504
Google Scholar
[18] Dai H Q, Liu L B, Xia B Z, Yu D J 2021 Phys. Rev. Appl. 15 064032
Google Scholar
[19] Zhu Z J, Hu N, Wu J Y, Li W X, Zhao J B, Wang M F, Zeng F Z, Dai H J, Zheng Y J 2022 Front. Phys. 10 1068833
Google Scholar
[20] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
Google Scholar
[21] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林 2022 物理学报 71 050701
Google Scholar
Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 050701
Google Scholar
[22] Wu W H, Yang P F, Zhai W, Wei B B 2019 Chin. Phys. Lett. 36 084302
Google Scholar
[23] Li P Q, Li Z L, Zhou W, Wang S W, Meng L, Peng Y G, Chen Z, Zheng H R, Zhu X F 2022 Adv. Funct. Mater. 32 2203109
Google Scholar
[24] Zeng L S, Lin Z B, Li Z L, Yang Y, Hu Y, Chen Z, Peng Y G, Ma T, Zheng H R, Zhu X F 2025 Adv. Mater. 37 202420229
Google Scholar
[25] Yang X, Zhang Z H, Xu M W, Li S X, Zhang Y H, Zhu X F, Ouyang X P, Alù A 2024 Nat. Commun. 15 4346
Google Scholar
[26] Zhao C Y, Wu K, Liu J J, Liang B, Cheng J C 2025 Phys. Rev. Appl. 23 034053
Google Scholar
[27] Chen A, Xia Y F, Chen Z X, Su H J, Liu J J, Yang J, Zhu X F, Liang B, Cheng J C 2025 Adv. Funct. Mater. 35 202425833
Google Scholar
Catalog
Metrics
- Abstract views: 504
- PDF Downloads: 15
- Cited By: 0