-
Two-phase heat transfer technology utilizing dielectric liquids has emerged as one of the efficient solutions for thermal management in high-power electronic devices. However, in practical applications, dielectric liquids exhibit significant boiling hysteresis due to the cause of interfacial materials and thermophysical properties, which in turn affects the boiling heat transfer performance. Owing to small spatial and temporal scales of bubble nucleation initiation, macroscopic experiments and traditional simulation methods still face certain limitations. In this study, non-equilibrium molecular dynamics and mechanical pressure control method are utilized to investigate the bubble nucleation and boiling heat transfer characteristics of R1336mm(Z) liquid film over different heating surface materials (i.e., copper atoms, aluminum atoms, and silicon atoms). Additionally, the heterogeneous nucleation mechanism of dielectric liquid is discussed from two perspectives: phonon vibrational density of states and potential energy restriction. On one hand, surface materials with high solid-liquid interaction forces and low-frequency vibrations, represented by copper atoms, can generate substantial interfacial heat flux and attract a large number of liquid-phase molecules near the heated wall. However, such material inevitably increases the energy barrier of bubble nucleation. On the other hand, surface materials with weak solid-liquid interaction forces and medium-to-high-frequency vibrations, represented by silicon atoms, can achieve reasonable phonon vibrational coupling with dielectric liquid to bridge interfacial thermal transport. Such material can reduce the potential energy restriction on the nanofilm, thus facilitating the formation of local liquid clusters into bubble nuclei. These findings can provide a comprehensive understanding of the underlying mechanisms of bubble nucleation and heat transfer in dielectric liquids and thus offer valuable insights for thermal management enhancement strategies in high-power electronic devices.
-
Keywords:
- Boiling heat transfer /
- Molecular dynamics /
- Phonon vibrational density /
- Bubble nucleation
-
[1] Lin X, Li Y, Wu W, Zhou Z, Chen B. 2024Renewable Sustainable Energy Rev. 189 114052
[2] Xu J, Hong F, Zhang C, 2024, 43: 5381-5392. 2024Chem. Ind. Eng. Prog. 43 5381(in Chinese) [许锦阳,洪芳军,张朝阳2024化工进展43 5381]
[3] Tian X, Xu Z, Zhang K, Chen C, Xu S, 2024 J. Refrig. 4517(in Chinese) [田兴旺,徐振涛,张琨,陈聪,徐士鸣2024制冷学报45 17]
[4] Mao Q, Feng M, Jiang X Z, Ren Y, Luo K H, Duin A. 2023Prog. Energy Combust. Sci. 97 101084
[5] Lin X, Wu W, Li Y, Jing D, Chen B, Zhou Z 2024Adv. Colloid Interface Sci. 334 103312
[6] Yabuki T, Nakabeppu O. 2014Int. J. Heat Mass Transfer 76 286
[7] Zhang X, Yang G, Cao B. 2022Adv. Mater. Interfaces 9 2200078
[8] Zhang L, Xu J, Lei J, 2018Acta Phys. Sin. 67 172(in Chinese) [张龙艳,徐进良,雷俊鹏2018物理学报67 172]
[9] Zhang S, Chen Z, Yang L, Miao R, Zhang Z 2020Chem. Ind. Eng. Prog. 39 3892(in Chinese) [张石重,陈占秀,杨历,苗瑞灿,张子剑2020化工进展39 3892-3899]
[10] Wang Q, Zhang Z, Chen Z, Liu F, Pang R 2023J. At. Mol. Phys. 40 47(in Chinese) [王清,张子剑,陈占秀,刘峰瑞,庞润宇2023原子与分子物理学报40 47]
[11] Datta S, Pillai R, Borg M, Sefiane K 2021Nano Lett. 21 1267
[12] Lin X, Zhu X, Yin J, Shi M, Liu Y, Chen B, Zhou Z 2024Int. Commun. Heat Mass Transfer 155 107567
[13] Bai P, Zhou L, Huang X, Du X 2021Int. J. Heat Mass Transfer 175 121391
[14] Deng C, Xu X, Huang Y, Duan Y, Liu C, Dang C 2024Int. J. Refrig. 158 35
[15] Lin X, Zhang L, Jiang Y, Liang Y, Zhou Z 2024 Int. J. Heat Mass Transfer 233 126053
[16] Cai S, Li Q, Liu C, Zhou Y. 2020Int. J. Refrig. 113 156-163
[17] Qian C, Yu B, Ye Z, Shi J, Chen J. 2024Int. J. Refrig. 157 186-198
[18] Su D, Li X, Zhang H, Li F. 2024Int. J. Heat Mass Transfer 220 124962
[19] Deng X, Xu X, Song X, Li Q, Liu C. 2023. Appl. Therm. Eng. 219 119682
[20] Ilic M, Stevanovic V, Milivojevic S, Petrovic M. 2021Int. J. Heat Mass Transfer 172 121141
[21] Chen Y, Cao Q, Li J, Yu B, Tao W. 2020J. Mol. Liq. 311 113306
[22] Xu Z, Huang D, Luo T. 2021J. Phys. Chem. C 125 24115
[23] Li Z, Lou J, Wu X, Li X, Chang F, Wang H, Li H. 2025J. Mol. Liq. 420 126836
[24] Raabe G 2015J. Chem. Eng. Data 60 2412
[25] Lin X, Wang Q, Zhu X, Shi M, Zhou Z 2024J. Mol. Liq. 404 124993
[26] Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018Micro Nano Lett. 13 351
[27] Peng P, Liao G, Shi T, Tang Z, Gao Y 2010Appl. Surf. Sci. 256 6284
[28] Zhou W, Li Y, Li M, Wei J, Tao W 2019Int. J. Heat Mass Transfer 136 1
[29] Ma X, Cheng P, Quan X. 2018Int. J. Heat Mass Transfer 127 1013
[30] Xu B, Hu S, Hung S, Shao C, Chandra H, Chen F, Kodama T, Shiomi J. 2021Sci. Adv. 7 eabf8197
Metrics
- Abstract views: 42
- PDF Downloads: 0
- Cited By: 0