Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of SERS detection performance based on MoS2/Zeolitic imidazolate framework-67 heterostructure

LI Binjiang ZHANG Yuchen LI Wei WANG Xuehua

Citation:

Improvement of SERS detection performance based on MoS2/Zeolitic imidazolate framework-67 heterostructure

LI Binjiang, ZHANG Yuchen, LI Wei, WANG Xuehua
cstr: 32037.14.aps.74.20250410
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Earth-abundant molybdenum disulfide (MoS2), as a promising substrate for surface-enhanced Raman spectroscopy (SERS), has attracted considerable attention. Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, making natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of great significance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have aroused significant interest due to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, in this study, MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructures are prepared by the hydrothermal method as SERS substrates, which exhibits exceptionaly high sensitivity to rhodamine 6G with an enhancement factor of up to 6.68×106. Moreover, after SERS is exposed to air for four months, its performance remains almost unchanged, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin is selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can lead to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, the label-free detection of bilirubin is achieved with a limit of detection as low as 10–10 mol/L. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, providing numerous adsorption sites for target molecules. Furthermore, the internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational designing of noble-metal-free materials for highly sensitive SERS detection.
      Corresponding author: WANG Xuehua, wangxueh@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 12334017, 12374326) and the National Key R&D Program of China (Grant No. 2021YFA1400800).
    [1]

    Odum E P 1969 Science 164 262Google Scholar

    [2]

    Guo Y, Liu Y 2022 J. Geog. Sci. 32 23Google Scholar

    [3]

    Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023 Coord. Chem. Rev. 475 214916Google Scholar

    [4]

    Li Y, Zhang J, Chen Q, Xia X, Chen M 2021 Adv. Mater. 33 2100855Google Scholar

    [5]

    Hou H, Anichini C, Samorì P, Criado A, Prato M 2022 Adv. Funct. Mater. 32 2207065Google Scholar

    [6]

    Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023 J. Mater. Sci. Technol. 145 74Google Scholar

    [7]

    Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022 Composites Part B 236 109823Google Scholar

    [8]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007 Science 317 1196Google Scholar

    [9]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [10]

    Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S Q 2022 J. Energy Chem. 75 16Google Scholar

    [11]

    Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021 Mater. Des. 211 110165Google Scholar

    [12]

    Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022 ACS Appl. Mater. Interfaces 14 9116Google Scholar

    [13]

    Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021 Micromachines 12 240Google Scholar

    [14]

    Cao Y 2021 ACS Nano 15 11014Google Scholar

    [15]

    He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021 ACS Nano 15 8896Google Scholar

    [16]

    Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022 Chem. Eng. J. 429 132477Google Scholar

    [17]

    Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020 J. Mater. Chem. A 8 6926Google Scholar

    [18]

    Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020 Appl. Catal. , B 272 118976Google Scholar

    [19]

    Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022 Composites Part B 230 109532Google Scholar

    [20]

    Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K Y 2021 Chem. Eng. J. 409 128293Google Scholar

    [21]

    Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018 ACS Appl. Mater. Interfaces 10 17883Google Scholar

    [22]

    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017 Adv. Mater. 29 1602914Google Scholar

    [23]

    Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022 Appl. Surf. Sci. 598 153750Google Scholar

    [24]

    Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021 Chem. Eng. J. 409 128158Google Scholar

    [25]

    Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020 ACS Appl. Mater. Interfaces 12 49452Google Scholar

    [26]

    Li Q, Huang F, Li S, Zhang H, Yu X 2022 Small 18 2104323Google Scholar

    [27]

    Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022 Int. J. Hydrogen Energy 47 37256Google Scholar

    [28]

    Xu J, Shang S, Gao W, Zeng P, Jiang S 2021 Cellulose 28 7389Google Scholar

    [29]

    Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022 Chem. Eng. J. 450 138157Google Scholar

    [30]

    Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018 Chem. Eng. J. 334 1233Google Scholar

    [31]

    Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020 Int. J. Hydrogen Energy 45 12787Google Scholar

    [32]

    Hou B, Wu J 2020 Dalton Trans. 49 17621Google Scholar

    [33]

    Leng X, Wang Y, Wang F 2019 Adv. Mater. Interfaces 6 1900010Google Scholar

    [34]

    Mohammadpour E, Asadpour-Zeynali K 2020 Microchem J. 157 104939Google Scholar

    [35]

    Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020 ACS Sustainable Chem. Eng. 8 5724Google Scholar

    [36]

    Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017 ACS Appl. Mater. Interfaces 9 25291Google Scholar

    [37]

    Li X, Lü X, Li N, Wu J, Zheng Y Z, Tao X 2019 Appl. Catal., B 243 76Google Scholar

    [38]

    Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021 J. Energy Chem. 62 546Google Scholar

    [39]

    Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018 Adv. Energy Mater. 8 1703482Google Scholar

    [40]

    Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021 Chem. Eng. J. 411 128567Google Scholar

    [41]

    Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017 Adv. Mater. 29 1703754Google Scholar

    [42]

    Sim D M, Han H J, Yim S, Choi M J, Jeon J, Jung Y S 2017 ACS Omega 2 4678Google Scholar

    [43]

    Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020 Adv. Energy Mater. 10 1903289Google Scholar

    [44]

    Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015 Adv. Mater. 27 4752Google Scholar

    [45]

    Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021 Adv. Energy Mater. 11 2101324Google Scholar

    [46]

    Ganesan P, Sivanantham A, Shanmugam S 2018 J. Mater. Chem. A 6 1075Google Scholar

    [47]

    Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021 Adv. Energy Mater. 11 2102134Google Scholar

    [48]

    Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019 Nanoscale 11 21493Google Scholar

    [49]

    Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023 Int. J. Hydrogen Energy 48 3048Google Scholar

    [50]

    Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022 Mater. Today Phys. 22 100600Google Scholar

    [51]

    Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022 Nanomaterials 12 896Google Scholar

    [52]

    Gupta J D, Jangra P, Mishra A K 2025 ACS Appl. Nano Mater. 8 7449Google Scholar

    [53]

    Lombardi J R, Birke R L 2014 J. Phys. Chem. C 118 11120Google Scholar

  • 图 1  ZIF-67, MoS2xMoS2/ZIF-67的合成流程示意图

    Figure 1.  Schematic diagram of the synthesis of ZIF-67, MoS2 and xMoS2/ZIF-67.

    图 2  MoS2, ZIF-67和MoS2/ZIF-67的(a) XRD图、(b)拉曼光谱和(c)傅里叶变换红外光谱

    Figure 2.  (a) XRD patterns, (b) Raman spectra, and (c) FT-IR spectra of MoS2, ZIF-67 and MoS2/ZIF-67.

    图 3  基底的SEM, TEM和EDS图 (a) MoS2, (b) ZIF-67和(c) 0.3MoS2/ZIF-67的SEM图像; (d) MoS2, (e) ZIF-67和(f) 0.3MoS2/ZIF-67的TEM图像; (g) 0.3MoS2/ZIF-67的HRTEM; (h) 图(g)中蓝色矩形区域放大后的图片; (i)—(l) Co, Mo, S, O的EDS元素映射图

    Figure 3.  SEM images of (a) MoS2, (b) ZIF-67 and (c) 0.3MoS2/ZIF-67; TEM images of (d) MoS2, (e) ZIF-67 and (f) 0.3MoS2/ZIF-67; (g) HRTEM of 0.3MoS2/ZIF-67; (h) magnified domains of the blue rectangle; (i)–(l) EDS element mapping images of Co, Mo, S and O.

    图 4  基底的XPS图 (a), (c), (d) MoS2和0.3MoS2/ZIF-67的(a) Mo 3d谱、(c) S 2p谱和(d) O 1s谱; (b) ZIF-67和0.3MoS2/ZIF-67的Co 2p谱

    Figure 4.  (a) Mo 3d spectrum, (c) S 2p spectrum and (d) O 1s spectrum of MoS2 and 0.3MoS2/ZIF-67; (b) Co 2p spectrum of ZIF-67 and 0.3MoS2/ZIF-67.

    图 5  基底的拉曼光谱和SERS性能图 (a) R6G(10–3 mol/L)吸附在MoS2, ZIF-67和xMoS2/ZIF-67上的SERS谱图; (b) 0.3MoS2/ZIF-67基底上不同浓度R6G的SERS光谱; (c) 1653 cm–1处SERS强度与对数浓度的线性关系; (d) 0.3MoS2/ZIF-67的可重复性、(e)循环性和(f)稳定性表征

    Figure 5.  (a) SERS spectra of R6G (10–3 mol/L) adsorbed on MoS2, ZIF-67 and xMoS2/ZIF-67; (b) SERS spectra of R6G of various concentrations enhanced by 0.3MoS2/ZIF-67; (c) linear relationship of SERS intensities at 1653 cm–1 versus logarithm of concentration; (d) reproducibility, (e) cyclicity and (f) stability of 0.3MoS2/ZIF-67.

    图 6  R6G-0.3MoS2/ZIF-67的能级和电荷转移示意图

    Figure 6.  Diagram of the energy level and charge transfer in the R6G-0.3MoS2/ZIF-67.

    图 7  复合后的基底与非复合基底的SERS性能对比图 (a)不同浓度胆红素在0.3MoS2/ZIF-67基底上的SERS光谱和(b) 1614 cm–1处信号强度与胆红素对数浓度的关系; (c)不同浓度胆红素在MoS2基底上的SERS光谱和(d) 1614 cm–1处信号强度与胆红素对数浓度的关系

    Figure 7.  SERS spectra of (a) 0.3MoS2/ZIF-67 and (c) MoS2 substrates with various concentrations of bilirubin. Plot of the intensity at 1614 cm–1 against the logarithmic concentration of bilirubin in the presence of (b) 0.3MoS2/ZIF-67 and (d) MoS2.

  • [1]

    Odum E P 1969 Science 164 262Google Scholar

    [2]

    Guo Y, Liu Y 2022 J. Geog. Sci. 32 23Google Scholar

    [3]

    Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023 Coord. Chem. Rev. 475 214916Google Scholar

    [4]

    Li Y, Zhang J, Chen Q, Xia X, Chen M 2021 Adv. Mater. 33 2100855Google Scholar

    [5]

    Hou H, Anichini C, Samorì P, Criado A, Prato M 2022 Adv. Funct. Mater. 32 2207065Google Scholar

    [6]

    Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023 J. Mater. Sci. Technol. 145 74Google Scholar

    [7]

    Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022 Composites Part B 236 109823Google Scholar

    [8]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007 Science 317 1196Google Scholar

    [9]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [10]

    Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S Q 2022 J. Energy Chem. 75 16Google Scholar

    [11]

    Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021 Mater. Des. 211 110165Google Scholar

    [12]

    Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022 ACS Appl. Mater. Interfaces 14 9116Google Scholar

    [13]

    Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021 Micromachines 12 240Google Scholar

    [14]

    Cao Y 2021 ACS Nano 15 11014Google Scholar

    [15]

    He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021 ACS Nano 15 8896Google Scholar

    [16]

    Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022 Chem. Eng. J. 429 132477Google Scholar

    [17]

    Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020 J. Mater. Chem. A 8 6926Google Scholar

    [18]

    Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020 Appl. Catal. , B 272 118976Google Scholar

    [19]

    Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022 Composites Part B 230 109532Google Scholar

    [20]

    Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K Y 2021 Chem. Eng. J. 409 128293Google Scholar

    [21]

    Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018 ACS Appl. Mater. Interfaces 10 17883Google Scholar

    [22]

    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017 Adv. Mater. 29 1602914Google Scholar

    [23]

    Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022 Appl. Surf. Sci. 598 153750Google Scholar

    [24]

    Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021 Chem. Eng. J. 409 128158Google Scholar

    [25]

    Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020 ACS Appl. Mater. Interfaces 12 49452Google Scholar

    [26]

    Li Q, Huang F, Li S, Zhang H, Yu X 2022 Small 18 2104323Google Scholar

    [27]

    Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022 Int. J. Hydrogen Energy 47 37256Google Scholar

    [28]

    Xu J, Shang S, Gao W, Zeng P, Jiang S 2021 Cellulose 28 7389Google Scholar

    [29]

    Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022 Chem. Eng. J. 450 138157Google Scholar

    [30]

    Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018 Chem. Eng. J. 334 1233Google Scholar

    [31]

    Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020 Int. J. Hydrogen Energy 45 12787Google Scholar

    [32]

    Hou B, Wu J 2020 Dalton Trans. 49 17621Google Scholar

    [33]

    Leng X, Wang Y, Wang F 2019 Adv. Mater. Interfaces 6 1900010Google Scholar

    [34]

    Mohammadpour E, Asadpour-Zeynali K 2020 Microchem J. 157 104939Google Scholar

    [35]

    Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020 ACS Sustainable Chem. Eng. 8 5724Google Scholar

    [36]

    Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017 ACS Appl. Mater. Interfaces 9 25291Google Scholar

    [37]

    Li X, Lü X, Li N, Wu J, Zheng Y Z, Tao X 2019 Appl. Catal., B 243 76Google Scholar

    [38]

    Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021 J. Energy Chem. 62 546Google Scholar

    [39]

    Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018 Adv. Energy Mater. 8 1703482Google Scholar

    [40]

    Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021 Chem. Eng. J. 411 128567Google Scholar

    [41]

    Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017 Adv. Mater. 29 1703754Google Scholar

    [42]

    Sim D M, Han H J, Yim S, Choi M J, Jeon J, Jung Y S 2017 ACS Omega 2 4678Google Scholar

    [43]

    Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020 Adv. Energy Mater. 10 1903289Google Scholar

    [44]

    Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015 Adv. Mater. 27 4752Google Scholar

    [45]

    Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021 Adv. Energy Mater. 11 2101324Google Scholar

    [46]

    Ganesan P, Sivanantham A, Shanmugam S 2018 J. Mater. Chem. A 6 1075Google Scholar

    [47]

    Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021 Adv. Energy Mater. 11 2102134Google Scholar

    [48]

    Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019 Nanoscale 11 21493Google Scholar

    [49]

    Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023 Int. J. Hydrogen Energy 48 3048Google Scholar

    [50]

    Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022 Mater. Today Phys. 22 100600Google Scholar

    [51]

    Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022 Nanomaterials 12 896Google Scholar

    [52]

    Gupta J D, Jangra P, Mishra A K 2025 ACS Appl. Nano Mater. 8 7449Google Scholar

    [53]

    Lombardi J R, Birke R L 2014 J. Phys. Chem. C 118 11120Google Scholar

  • [1] DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan. Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate. Acta Physica Sinica, 2025, 74(5): 057402. doi: 10.7498/aps.74.20241671
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] Yang Wen, Ding Qian-Yao, Zhai Dong-Mei, Bo Kai-Wen, Feng Yan-Yan, Wen Jie, He Fang. Fabrication and electrochemical properties of hollow cage-like nickel cobalt layered hydroxides with porous structure. Acta Physica Sinica, 2022, 71(1): 018201. doi: 10.7498/aps.71.20211100
    [5] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [8] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [9] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [10] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [11] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [12] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [13] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [16] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [17] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [18] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [19] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
Metrics
  • Abstract views:  330
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2025
  • Accepted Date:  20 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回