-
Fingerprint recognition technology plays a critical role in modern security and information protection. Traditional 2D fingerprint recognition methods are still limited due to an imbalance between growing security demands and inefficiency of encoding detailed information. Although various 3D fingerprint technologies have been introduced recently, their practical applications are restricted by complex sampling procedures and bulky equipment. This paper proposes a new 3D fingerprint fragments reconstruction method based on the condensation of microdroplet clusters, resulting in efficiently extracting detailed structural information from fingerprint patterns. By identifying the unique topological features of fingerprint valleys, a micrometer-scale vapor transport model is developed. A differential approach is used to divide the microdroplet clusters formed when a finger is pressed on a cold surface into discrete units. In each unit, the diffusion distance and mass transfer in the condensation process are calculated. Nonlinear regression techniques are then utilized to reconstruct the 3D fingerprint fragments. Furthermore, the experimental validation shows excellent consistency with premeasured fingerprint data, with a reconstruction error of less than 9.3%. It has made a significant improvement in capturing high-density fingerprint data in a short period of time, completing the data acquisition in less than 1 second. Compared with ultrasound imaging techniques, this method significantly shortens the acquisition time, which typically involve complex procedures. Additionally, it offers a more efficient alternative to deep learning methods, which require extensive data training and computational processes. This 3D fingerprint reconstruction method provides an efficient, low-cost and easy-to-operate solution. It holds the potential to significantly enhance personal identification and information protection systems, contributing to the advancement of 3D fingerprint recognition technology in practical applications.
-
图 3 不同基底表面特性对液滴行为的影响比较 (a) 普通硅片与疏水硅片的接触角测量; (b) 普通硅片与疏水硅片上液滴冷凝效果对比
Figure 3. Comparison of the effect of Substrate surface properties on droplet behavior: (a) Contact angle measurements on standard and hydrophobic silicon wafers; (b) droplet condensation performance on standard and hydrophobic silicon wafers.
图 5 指纹犁沟模型建立及其有效性分析 (a) 犁沟内水蒸气输运微观示意图; (b) 冷凝液滴传质面积计算示意图; (c) 指纹片段冷凝微滴群图像; (d) 指纹片段水蒸气传质距离图; (e) 指纹片段重构结果3D图
Figure 5. Establishment of the fingerprint valley model and effectiveness analysis: (a) Schematics of the microscopic vapor transfer within the valley; (b) schematic of mass transfer area calculation for condensed drops; (c) image of condensed droplet clusters on the fingerprint segment; (d) vapor mass transfer distance within the fingerprint segment; (e) 3D reconstruction of the fingerprint segment.
图 6 三维指纹重构 (a) 指纹样品激光扫描图; (b) 扫描所得指纹片段三维形貌; (c) 指纹片段对应冷凝液滴带分布图; (d) 重构所得指纹片段三维形貌
Figure 6. 3D reconstruction of fingerprints: (a) Laser scan of the fingerprint sample; (b) 3D morphology of the fingerprint segment derived from the scan; (c) distribution of condensation droplet bands corresponding to the fingerprint segment; (d) 3D morphology of the reconstructed fingerprint segment.
-
[1] Kolivand H, Asadianfam S, Akintoye K A, Rahim M S 2023 Multimed. Tools Appl. 82 33541
Google Scholar
[2] Li H, Wei P, Hu P 2021 IEEE T. Multimedia 24 594
[3] Jan F, Min-Allah N, Agha S, Usman I, Khan I 2021 Multimed. Tools Appl. 80 4579
Google Scholar
[4] Fei L K, Lu G M, Jia W, Teng S H, Zhang D 2018 IEEE T. Syst. Man Cy. A 49 346
[5] Lopes A T, De Aguiar E, De Souza A F, Oliveira-Santos T 2017 Pattern Recogn. 61 610
Google Scholar
[6] Pinkus H 1963 JAMA 183 979
[7] Tian J Z, Zhang J Y, Li X Y, Zhou C C, Wu R L, Wang Y C, Huang S Y 2021 IEEE Access 9 160855
Google Scholar
[8] Niu L H, Mantri N, Li C G, Xue C, Pang E 2011 TCM 6 18
[9] Zhang J Q, Shen G X, Saad W, Chowdhury K 2023 IEEE Commun. Mag. 61 110
[10] Zhou Z Y, Kumar A 2023 IEEE T. Inf. Forensics Secur. 19 441
[11] Cui Z, Feng J J, Li S H, Lu J W, Zhou J 2018 IEEE T. Inf. Forensics Secur. 13 3153
Google Scholar
[12] An B W, Heo S, Ji S, Bien F, Park J U 2018 Nat. Commun. 9 2458
Google Scholar
[13] Yi Y, Cao L C, Guo W, Luo Y P, Feng J J, He Q S, Jin G F 2013 Opt. Express 21 17108
Google Scholar
[14] Liu F, Zhang D, Shen L L 2015 Neurocomputing 168 599
Google Scholar
[15] Xie W, Song Z, Chung R 2013 Opt. Eng. 52 103103
Google Scholar
[16] Chatterjee A, Bhatia V, Prakash S 2017 Opt. Lasers Eng. 95 1
[17] Wang Y C, Lau D L, Hassebrook L G 2010 Appl. Opt. 49 592
Google Scholar
[18] Labati R D, Genovese A, Piuri V, Scotti F 2016 IEEE T. Syst. Man Cy. B 46 202
Google Scholar
[19] Jiang X Y, Lu Y P, Tang H Y, Tsai J M, Ng E J, Daneman M J, Boser B E, Horsley D A 2017 Microsyst. Nanoeng. 3 17059
Google Scholar
[20] Zhao C W, Li J, Lin M, Chen X, Liu Y 2022 IEEE T. Ultrason. Ferr. 69 2965
Google Scholar
[21] Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T 2008 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Aug 20-25, 2008 p2173
[22] 李柯林, 黄丽淇, 杨洋 2021 电子测试 15 124
Google Scholar
Li K L, Huang L Q, Yang Y 2021 Electronic Test. 15 124
Google Scholar
[23] Liu Y H, Zhou B C, Han C Y, Guo T D, Qin J 2020 Appl. Intell. 50 397
Google Scholar
[24] Shen G X, Zhang J Q, Marshall A, Peng L N, Wang X B 2021 IEEE J. Sel. Areas Commun. 39 2604
Google Scholar
[25] 王崇杰, 刘媛媛, 张博超, 张倩妮, 刘金艳, 金鸽, 张敏 2014 物理学报 63 122801
Google Scholar
Wang C J, Liu Y Y, Zhang B C, Zhang Q N, Liu J Y, Jin G, Zhang M 2014 Acta Phys. Sin. 63 122801
Google Scholar
[26] 吴春生, 李孝君, 吴浩 2022 刑事技术 47 88
Wu C S, Li X J, Wu H 2022 Forensic Sci. Tech. 47 88
[27] Yin X M, Zhu Y F, Hu J K 2023 IEEE T. Pattern Anal. 45 8358
[28] 宋天一, 兰忠, 马学虎 2010 化工学报 61 839
Song T Y, Lan Z, Ma X H 2010 CIESC J. 61 839
[29] 宫保强, 姚宝国, 周子晗 2022 传感技术学报 35 14
Google Scholar
Gong B Q, Yao B G, Zhou Z H 2022 Chin. J. Sensors Actuats. 35 14
Google Scholar
[30] Guo W, Calija L M M, Xu P, Liu K, A Kumar S 2021 Vacuum 190 110292
Google Scholar
[31] Fletcher N H 1958 J Chem. Phys. 29 572
Google Scholar
[32] 曹治觉 2002 物理学报 51 25
Google Scholar
Cao Z J 2002 Acta Phys. Sin. 51 25
Google Scholar
[33] Hong Z, Beysens D 1995 Langmuir 11 627
Google Scholar
[34] Zhao Y G, Yang C 2016 Appl. Phys. Lett. 108 061065
[35] Arda O, Göksügür N, Tüzün Y 2014 Clin. Dermatol. 32 3
Google Scholar
[36] Kückena M, Newell A C 2005 J. Theor. Biol. 235 71
Google Scholar
[37] Wertheim K, Maceo A 2002 J. Forensic Identif. 52 35
[38] 陈云国, 方力 2007 刑事技术 6 49
Google Scholar
Chen Y G, Fang L 2007 Forensic Sci. Technol. 6 49
Google Scholar
[39] Yum S M, Baek I K, Hong D, Kim J, Jung K, Kim S, Eom K, Jang J, Kim S, Sattorov M, Lee M G, Kim S, Adams M J, Park G S 2020 Proc. Natl. A. Sci. 117 31665
Google Scholar
[40] Sato T, Katayama C, Hayashida Y, Asanuma Y, Aoyama Y 2022 Exp. Dermatol. 31 1891
Google Scholar
[41] Yu X J, Xiong Q Z, Luo Y M, Wang N S, Wang L L, Tey H L, Liu L B 2016 IEEE Photonic. Tech. Lett. 29 70
[42] Masi A D, Olla S, Presutti E 2019 J. Stat. Phys. 175 203
Google Scholar
[43] Aum J, Kim J H, Jeong J 2015 IEEE Photonic. Tech. Lett. 28 163
[44] 兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 物理学报 61 150508
Google Scholar
Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508
Google Scholar
[45] Skinner L M, Sambles J R 1972 J. Aerosol Sci. 3 199
Google Scholar
Metrics
- Abstract views: 461
- PDF Downloads: 8
- Cited By: 0