Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress and perspects of thermal conductivity regulation in ionic thermocells

LIU Lili ZHANG Ding MA Rujun

Citation:

Research progress and perspects of thermal conductivity regulation in ionic thermocells

LIU Lili, ZHANG Ding, MA Rujun
cstr: 32037.14.aps.74.20250503
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the increasing demand for sustainable energy technologies, ionic thermocells are receiving more and more attention due to their potential to correct low-grade heat by directly converting thermal energy into electrical energy. Among the key performance indicators, the effective thermal conductivity (κeff) plays a crucial role in maintaining internal temperature gradients and enhancing overall energy conversion efficiency of thermocells. However, compared with the extensively studied thermopower (Stg) and electrical conductivity (σ), κeff has received less systematic attention. This review summarizes recent advances in the regulation of thermal conductivity in ionic thermocells, focusing on its crucial role in thermoelectric performance. We discuss the influences of electrode materials, electrolyte compositions, and device architectures on heat transport, and highlight representative strategies involving materials engineering and structural design to optimize the synergy between thermal conduction and ionic conduction. Finally, we outline future directions such as material optimization, interface engineering, and improved thermal characterization techniques to promote the development of next-generation high-performance thermocells.
      Corresponding author: ZHANG Ding, zhangding@nankai.edu.cn ; MA Rujun, malab@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0711500), the National Natural Science Foundation of China (Grant Nos. 52473215, 52273248, 52303238), and the Natural Science Foundation of Tianjin City, China (Grant No. S24JQU021).
    [1]

    Abramovitz A, Shmilovitz D 2021 Energies 14 4917Google Scholar

    [2]

    Ansu-Mensah P, Bein M A 2019 Nat. Resour. Forum 43 181Google Scholar

    [3]

    Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022 Environ. Sci. Pollut. Res. 29 7067Google Scholar

    [4]

    Hosseini S E, Wahid M A 2016 Renewable Sustainable Energy Rev. 57 850Google Scholar

    [5]

    Shenkoya T 2020 Internet of Things 11 100250Google Scholar

    [6]

    Mufutau Opeyemi B 2021 Energy 228 120519Google Scholar

    [7]

    Liu X, Elgowainy A, Wang M 2020 Green Chem. 22 5751Google Scholar

    [8]

    Wu J, Black J J, Aldous L 2017 Electrochim. Acta 225 482Google Scholar

    [9]

    Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021 Adv. Sci. 8 2100669Google Scholar

    [10]

    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019 Adv. Funct. Mater. 29 1900304Google Scholar

    [11]

    Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017 Adv. Funct. Mater. 27 1606287Google Scholar

    [12]

    Hendricks T J 2019 MRS Adv. 4 457Google Scholar

    [13]

    Zhang L, Shi X L, Yang Y L, Chen Z G 2021 Mater. Today 46 62Google Scholar

    [14]

    Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020 Science 368 1091Google Scholar

    [15]

    Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016 Angew. Chem. Int. Ed. 55 12050Google Scholar

    [16]

    Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022 Sustainability 14 9483Google Scholar

    [17]

    Battistel A, Peljo P 2021 Curr. Opin. Electrochem. 30 100853Google Scholar

    [18]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [19]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019 Chem. Rev. 119 5461Google Scholar

    [20]

    Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022 Adv. Energy Mater. 12 2202731Google Scholar

    [21]

    Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023 eScience 3 100122Google Scholar

    [22]

    Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021 Green Chem. 23 457Google Scholar

    [23]

    Moioli E, Schildhauer T 2022 Renewable Sustainable Energy Rev. 158 112120Google Scholar

    [24]

    Baliban R C, Elia J A, Weekman V, Floudas C A 2012 Comput. Chem. Eng. 47 29Google Scholar

    [25]

    Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022 Energy Convers. Manag. 261 115670Google Scholar

    [26]

    He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022 Nano Energy 96 107109Google Scholar

    [27]

    Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019 Angew. Chem. Int. Ed. 58 15206Google Scholar

    [28]

    Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022 Nano Energy 93 106795Google Scholar

    [29]

    Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018 Nat. Commun. 9 5146Google Scholar

    [30]

    Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024 Nat. Commun. 15 1172Google Scholar

    [31]

    Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024 J. Mater. Chem. A 12 24041Google Scholar

    [32]

    Jin L, Greene G W, MacFarlane D R, Pringle J M 2016 ACS Energy Lett. 1 654Google Scholar

    [33]

    Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023 Adv. Mater. 35 2300696Google Scholar

    [34]

    Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022 Energy Environ. Sci. 15 3670Google Scholar

    [35]

    Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025 Nat. Commun. 16 16932

    [36]

    Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021 Joule 5 768Google Scholar

    [37]

    Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024 ACS Energy Lett. 9 679Google Scholar

    [38]

    Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022 Adv. Mater. 34 2202266Google Scholar

    [39]

    He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022 J. Mater. Chem. A 10 20730Google Scholar

    [40]

    Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023 Micromachines 14 155Google Scholar

    [41]

    Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022 Nano Energy 100 107449Google Scholar

    [42]

    Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023 Sci. China Mater. 66 1934Google Scholar

    [43]

    Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024 EcoEnergy 2 478Google Scholar

    [44]

    Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025 Adv. Energy Mater. 15 2405502Google Scholar

    [45]

    Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021 ACS Appl. Mater. Interfaces 13 37316Google Scholar

    [46]

    Kim K, Hwang S, Lee H 2020 Electrochim. Acta 335 135651Google Scholar

    [47]

    Dupont M F, MacFarlane D R, Pringle J M 2017 Chem. Commun. 53 6288Google Scholar

    [48]

    Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022 Adv. Energy Mater. 12 2103666Google Scholar

    [49]

    Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010 Nano Lett. 10 838Google Scholar

    [50]

    Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017 Adv. Mater. 29 1605652Google Scholar

    [51]

    Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016 Nat. Commun. 7 10600Google Scholar

    [52]

    Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019 Nanomaterials 9 10Google Scholar

    [53]

    Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019 IOP Conf. Ser. Mater. Sci. Eng. 693 012028Google Scholar

    [54]

    Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020 Science 370 342Google Scholar

    [55]

    Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022 Energy Environ. Sci. 15 2974Google Scholar

    [56]

    Lei Z, Gao W, Wu P 2021 Joule 5 2211Google Scholar

    [57]

    Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024 SusMat 4 e225Google Scholar

    [58]

    Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023 EcoMat 5 e12302Google Scholar

    [59]

    Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024 Sci. China Chem. 67 1672Google Scholar

  • 图 1  (a) 碳纳米管纸、(b) 碳纳米管气凝胶电极以及与离子传输的示意图, 插图是相对应的SEM图[51]; (c) 碳纳米管气凝胶电极的极化曲线, 插图显示了极限电流与亚铁氰化物浓度的关系[51]; (d) 原始碳纳米管的SEM正面图[52]; (e) 碳纳米管-石墨烯杂化物的SEM正面图[52]; (f) 碳纳米管-石墨烯杂化物的SEM横截面[52]

    Figure 1.  (a) Carbon nanotube (CNT) paper and (b) CNT aerogel electrodes with schematic illustration of ion transport; insets show corresponding SEM images [51]; (c) polarization curve of the CNT aerogel electrode, with inset showing the relationship between limiting current and ferricyanide concentration[51]; (d) SEM top view of pristine CNTs[52]; (e) SEM top view of CNT-graphene hybrid[52]; (f) SEM cross-sectional view of the CNT-graphene hybrid.

    图 2  (a) 热电化学电池结构示意图[53]; (b) 在不同的温差下, 热电池的短路电流和开路电压变化[53]; (c) 热电池的电极和(d) 电极上覆盖氧化的MWCNT的SEM图像[53]

    Figure 2.  (a) Schematic of thermocell[53]; (b) short-circuit current and open-circuit voltage of the thermocell under different temperature gradients[53]; SEM image of (c) the electrode of the thermocell and (d) electrode coated with an oxidized multi-walled carbon nanotube layer [53].

    图 3  (a) 热电池操作的示意图[50]; (b) [Fe(CN)6]3–/4–浓度对热电池离子电导率和热导率的变化[50]; (c) [Fe(CN)6]3–/4–浓度对热电池PmaxPmax/(ΔT)2(插图)的影响[50]; (d) 添加Gdm+前后0.4 mol/L [Fe(CN)6]3–/4–的照片[54]; (e) 单个平面TC-LTC热电池的照片[54]; (f) LTC和TC-LTC在不同温度下的导热系数[54]; (g) 胍离子引起的热电池增强效应的机理示意图[55]; (h) 具有不同浓度CH6ClN3的浸泡溶液中氧化还原对的相对浓度变化[55]; (i) 以0—4.0 mol/L的胍离子(CH6ClN3)和0.3 mol/L的[Fe(CN)6]3–/4–作为不同的浸泡液, 热电池热导率的变化[55]

    Figure 3.  (a) Schematic of thermocell operation[50]; (b) effect of [Fe(CN)6]3–/4– concentration on ionic conductivity and thermal conductivity of the thermocell[50]; (c) effect of [Fe(CN)6]3–/4– concentration on Pmax and Pmax/(ΔT)2 (inset)[50]; (d) photos of 0.4 mol/L [Fe(CN)6]3–/4– before and after adding Gdm+[54]; (e) photo of a single-plane TC-LTC thermocell[54]; (f) thermal conductivity of LTC and TC-LTC at different temperatures[54]; (g) schematic of thermocouple enhancement mechanism induced by Gdm+[55]; (h) relative redox species concentrations in soaking solutions with different CH6ClN3 concentrations[55]; (i) thermal conductivity of thermocells with 0–4.0 mol/L CH6ClN3 and 0.3 mol/L [Fe(CN)6]3–/4– as soaking solutions[55].

    图 4  (a) 由质量分数为5.5%琼脂和0.1 mol/L [Fe(CN)6]3–/4–制备的凝胶照片[8]; 在0.1 mol/L [Fe(CN)6]3–/4–浓度下, (b) 液态热电池和(c) 凝胶热电池的扫描速率和归一化循环伏安图[8]; (d) 当CR2032外壳发生热短路时, 将较冷的铝块贴上并保持在15 ℃下, 这些电池所需的相对冷却功率[8]; (e)热端和冷端温度分别为35 ℃和15 ℃时, 不同处理方式的电极在0.1 mol/L [Fe(CN)6]3–/4–下的短路电流密度[8]

    Figure 4.  (a) Photo of gel made from 5.5% agar (mass percent) and 0.1 mol/L [Fe(CN)6]3–/4–[8]; cyclic voltammograms of (b) liquid thermocell and (c) gel thermocell at various scan rates, normalized at 0.1 mol/L [Fe(CN)6]3–/4–[8]; (d) relative cooling power required when CR2032 cells experience shorting, with a cold aluminum block applied and maintained at 15 ℃[8]; (e) jsc of electrodes with different treatments in 0.1 mol/L [Fe(CN)6]3–/4–, with hot and cold sides at 35 ℃ and 15 ℃, respectively[8].

    图 5  (a) 热电池的组成以及组装好的平面热电池的照片(插图为热电池工作原理图)[51]; (b) 由圆柱形碳纳米管热电池电极组装的热电池照片[51]; (c) 不同处理电极热电池的功率密度与电流密度变化[51]; (d) 热电池结构图, MWNT泡沫碳电极的SEM图像和海绵纤维素热分离器的光学图像[50]; (e) 不同温差下该热电池的功率密度与其他类型平面热电池的比较[50]; (f) 平面电极、鳍状电极和针电极热电池的性能比较[50]

    Figure 5.  (a) Components of the thermocell and photo of the assembled planar thermocell (inset: working principle diagram)[51]; (b) photo of thermocell assembled with cylindrical CNT electrodes[51]; (c) power density vs. current density of thermocells with different electrode treatments[51]; (d) schematic of thermocouple structure, SEM image of MWNT foam carbon electrode, and optical image of sponge cellulose thermal separator[50]; (e) power density of the thermocouple under different temperature gradients compared with other planar types[50]; (f) performance comparison of planar, finned, and needle electrode thermocells[50].

    图 6  (a) 基于纤维素气凝胶的TEC用于热电转换的示意图[58]; (b) 太阳光照后, LE-TEC(上图)和AE-TEC(下图)侧面的红外图像[58]; (c) LE-TEC和AE-TEC的κeff随温度的变化[58]; (d) 不同高度AE-TEC, AE-H 2.0, AE-H 2.5和AE-H 3.0热电池的照片[58]; (e) AE-H 2.5和AE-H 2.5-泡沫TEC的照片, EPS泡沫覆盖在气凝胶顶部[58]; (f) 一次阳光照射后, AE-H 2.5和AE-H 2.5-泡沫在23 ℃下的电流-电压和功率-电压曲线[58]; (g) TEC的组成部分和管状TEC器件的示意图[59]; (h) ASE 2-2电极的SEM图像[59]; (i) 在不同温差下, ASE 2-2 TEC的功率密度与负载电阻的关系[59]

    Figure 6.  (a) Schematic of cellulose aerogel-based TEC for thermoelectric conversion[58]; (b) infrared images of LE-TEC (top) and AE-TEC (bottom) side views under sunlight[58]; (c) temperature-dependent effective κeff of LE-TEC and AE-TEC[58]; (d) photos of AE-TEC thermocells with different heights: AE-H 2.0, AE-H 2.5, and AE-H 3.0[58]; (e) photos of AE-H 2.5 and AE-H 2.5-foam TECs, with EPS foam covering the aerogel top[58]; (f) current–voltage and power–voltage curves of AE-H 2.5 and AE-H 2.5-foam at 23 ℃ after one sunlight exposure[58]; (g) components and schematic of tubular TEC device[59]; (h) SEM image of ASE 2-2 electrode[59]; (i) power density vs. load resistance of ASE 2-2 TEC under different temperature gradients[59]

  • [1]

    Abramovitz A, Shmilovitz D 2021 Energies 14 4917Google Scholar

    [2]

    Ansu-Mensah P, Bein M A 2019 Nat. Resour. Forum 43 181Google Scholar

    [3]

    Iqbal S, Wang Y, Shaikh P A, Maqbool A, Hayat K 2022 Environ. Sci. Pollut. Res. 29 7067Google Scholar

    [4]

    Hosseini S E, Wahid M A 2016 Renewable Sustainable Energy Rev. 57 850Google Scholar

    [5]

    Shenkoya T 2020 Internet of Things 11 100250Google Scholar

    [6]

    Mufutau Opeyemi B 2021 Energy 228 120519Google Scholar

    [7]

    Liu X, Elgowainy A, Wang M 2020 Green Chem. 22 5751Google Scholar

    [8]

    Wu J, Black J J, Aldous L 2017 Electrochim. Acta 225 482Google Scholar

    [9]

    Liu Y, Wang H, Sherrell P C, Liu L, Wang Y, Chen J 2021 Adv. Sci. 8 2100669Google Scholar

    [10]

    Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H 2019 Adv. Funct. Mater. 29 1900304Google Scholar

    [11]

    Núñez C G, Navaraj W T, Polat E O, Dahiya R 2017 Adv. Funct. Mater. 27 1606287Google Scholar

    [12]

    Hendricks T J 2019 MRS Adv. 4 457Google Scholar

    [13]

    Zhang L, Shi X L, Yang Y L, Chen Z G 2021 Mater. Today 46 62Google Scholar

    [14]

    Han C G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S P, Chen G, Liu W 2020 Science 368 1091Google Scholar

    [15]

    Yang P H, Liu K, Chen Q, Mo X B, Zhou Y S, Li S, Feng G, Zhou J 2016 Angew. Chem. Int. Ed. 55 12050Google Scholar

    [16]

    Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A, Kuznetsov D 2022 Sustainability 14 9483Google Scholar

    [17]

    Battistel A, Peljo P 2021 Curr. Opin. Electrochem. 30 100853Google Scholar

    [18]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [19]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A 2019 Chem. Rev. 119 5461Google Scholar

    [20]

    Ao D W, Liu W D, Zheng Z H, Shi X L, Wei M, Zhong Y M, Li M, Liang G X, Fan P, Chen Z G 2022 Adv. Energy Mater. 12 2202731Google Scholar

    [21]

    Cao T, Shi X L, Li M, Hu B, Chen W, Liu W Di, Lyu W, MacLeod J, Chen Z G 2023 eScience 3 100122Google Scholar

    [22]

    Ohno H, Ikhlayel M, Tamura M, Nakao K, Suzuki K, Morita K, Kato Y, Tomishige K, Fukushima Y 2021 Green Chem. 23 457Google Scholar

    [23]

    Moioli E, Schildhauer T 2022 Renewable Sustainable Energy Rev. 158 112120Google Scholar

    [24]

    Baliban R C, Elia J A, Weekman V, Floudas C A 2012 Comput. Chem. Eng. 47 29Google Scholar

    [25]

    Villarroel-Schneider J, Höglund-Isaksson L, Mainali B, Martí-Herrero J, Cardozo E, Malmquist A, Martin A 2022 Energy Convers. Manag. 261 115670Google Scholar

    [26]

    He W, Li S, Bai P, Zhang D, Feng L, Wang L, Fu X, Cui H, Ji X, Ma R 2022 Nano Energy 96 107109Google Scholar

    [27]

    Jin H, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z, He J H, Zhu T, Wang J, Lin Z, Wang S 2019 Angew. Chem. Int. Ed. 58 15206Google Scholar

    [28]

    Yu B, Xiao H, Zeng Y, Liu S, Wu D, Liu P, Guo J, Xie W, Duan J, Zhou J 2022 Nano Energy 93 106795Google Scholar

    [29]

    Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J 2018 Nat. Commun. 9 5146Google Scholar

    [30]

    Wang S, Li Y, Yu M, Li Q, Li H, Wang Y, Zhang J, Zhu K, Liu W 2024 Nat. Commun. 15 1172Google Scholar

    [31]

    Han H, Zhao L, Wu X, Zuo B, Bian S, Li T, Liu X, Jiang Y, Chen C, Bi J, Xu J, Yu L 2024 J. Mater. Chem. A 12 24041Google Scholar

    [32]

    Jin L, Greene G W, MacFarlane D R, Pringle J M 2016 ACS Energy Lett. 1 654Google Scholar

    [33]

    Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R 2023 Adv. Mater. 35 2300696Google Scholar

    [34]

    Liu Y, Cui M, Ling W, Cheng L, Lei H, Li W, Huang Y 2022 Energy Environ. Sci. 15 3670Google Scholar

    [35]

    Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q 2025 Nat. Commun. 16 16932

    [36]

    Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J 2021 Joule 5 768Google Scholar

    [37]

    Qian X, Ma Z, Huang Q, Jiang H, Yang R 2024 ACS Energy Lett. 9 679Google Scholar

    [38]

    Zhang H, Lek D G, Huang S, Lee Y M, Wang Q 2022 Adv. Mater. 34 2202266Google Scholar

    [39]

    He X, Sun H, Li Z, Chen X, Wang Z, Niu Y, Jiang J, Wang C 2022 J. Mater. Chem. A 10 20730Google Scholar

    [40]

    Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X 2023 Micromachines 14 155Google Scholar

    [41]

    Bai C, Li X, Cui X, Yang X, Zhang X, Yang K, Wang T, Zhang H 2022 Nano Energy 100 107449Google Scholar

    [42]

    Zhao Y, Fu X, Liu B, Sun J, Zhuang Z, Yang P, Zhong J, Liu K 2023 Sci. China Mater. 66 1934Google Scholar

    [43]

    Liu X, Wang T, Ye H, Nan W, Chen M, Fang J, Fan F R 2024 EcoEnergy 2 478Google Scholar

    [44]

    Kao S T, Hsu C C, Hong S H, Jeng U S, Wang C H, Tung S H, Liu C L 2025 Adv. Energy Mater. 15 2405502Google Scholar

    [45]

    Bai C, Wang Z, Yang S, Cui X, Li X, Yin Y, Zhang M, Wang T, Sang S, Zhang W 2021 ACS Appl. Mater. Interfaces 13 37316Google Scholar

    [46]

    Kim K, Hwang S, Lee H 2020 Electrochim. Acta 335 135651Google Scholar

    [47]

    Dupont M F, MacFarlane D R, Pringle J M 2017 Chem. Commun. 53 6288Google Scholar

    [48]

    Li Y, Li Q, Zhang X, Deng B, Han C, Liu W 2022 Adv. Energy Mater. 12 2103666Google Scholar

    [49]

    Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Dela Cruz M E, Ferraris J P, Zakhidov A A, Baughman R H 2010 Nano Lett. 10 838Google Scholar

    [50]

    Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H 2017 Adv. Mater. 29 1605652Google Scholar

    [51]

    Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H 2016 Nat. Commun. 7 10600Google Scholar

    [52]

    Zhou Y, Qian W, Huang W, Liu B, Lin H, Dong C 2019 Nanomaterials 9 10Google Scholar

    [53]

    Shpekina V, Burmistrov I, Gorshkov N, Artyukhov D, Kiselev N, Kovyneva N, Smirnova Y 2019 IOP Conf. Ser. Mater. Sci. Eng. 693 012028Google Scholar

    [54]

    Yu B, Duan J, Cong H, Xie W, Liu R, Zhuang X, Wang H, Qi B, Xu M, Wang Z L, Zhou J 2020 Science 370 342Google Scholar

    [55]

    Zhang D, Mao Y, Ye F, Li Q, Bai P, He W, Ma R 2022 Energy Environ. Sci. 15 2974Google Scholar

    [56]

    Lei Z, Gao W, Wu P 2021 Joule 5 2211Google Scholar

    [57]

    Zhou Y, Zhang D, Zhang S, Liu Y, Ma R, Wallace G, Chen J 2024 SusMat 4 e225Google Scholar

    [58]

    Zhao J, Wu X, Yu H, Wang Y, Wu P, Yang X, Chu D, Owens G, Xu H 2023 EcoMat 5 e12302Google Scholar

    [59]

    Mo Z, Wei S, Xie D, Zhu K, Li H, Lu X, Liang L, Du C, Liu Z, Chen G 2024 Sci. China Chem. 67 1672Google Scholar

  • [1] LI Hao, ZHOU Jingjing, SUN Qi, CHEN Wen, ZHOU Jing. Design of broadband rainwater piezoelectric energy harvester based on multimodal resonance. Acta Physica Sinica, 2025, 74(14): 147701. doi: 10.7498/aps.74.20250213
    [2] Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li. Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric. Acta Physica Sinica, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] Wang Xue-Zhang, Li Ke-Qun. Liquid-cooled structure design and heat dissipation characteristics analysis of cross-flow channels for lithium batteries. Acta Physica Sinica, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [4] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [5] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [6] Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels. Acta Physica Sinica, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [7] Gong Bu-Qing, Chen Xiao-Yu, Wang Wei-Peng, Wang Zhi-Ye, Zhou Hua, Shen Xiang-Qian. Ag@SiO2 coupled structure’s design and regulation and control of response to thin film solar cells. Acta Physica Sinica, 2020, 69(18): 188801. doi: 10.7498/aps.69.20200334
    [8] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [9] Cai Meng-Yuan, Tang Chun-Mei, Zhang Qiu-Yue. Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials. Acta Physica Sinica, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [10] Zhuang Xin-Gang, Liu Hong-Bo, Zhang Peng-Ju, Shi Xue-Shun, Liu Chang-Ming, Liu Hong-Yuan, Wang Heng-Fei. Design and analysis of thermo-structure for cryogenic radiometer. Acta Physica Sinica, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880
    [11] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [12] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Design of two-dimensional plate directional heat transmission structure based on meta materials. Acta Physica Sinica, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [13] Liu Jun, Zhang Tian-En, Zhang Wei, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Tang Jun. Design and optimization of integrated micro optical gyroscope based on a planar ring resonator. Acta Physica Sinica, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [14] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [15] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [16] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [17] Yang Chen, Zhang Hong-Xin, Wang Hai-Xia, Xu Nan, Xu Yuan-Yuan, Huang Li-Yu, Zhang Ke-Xin. Design and simulation of a cross split ring lefthanded materials unit structure. Acta Physica Sinica, 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [18] Zhou Jun, Sun Yong-Tang, Sun Tie-Tun, Liu Xiao, Song Wei-Jie. Design of a highly efficient light-trapping structure for amorphous silicon solar cell. Acta Physica Sinica, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [19] Guo Yun-Sheng, Zhang Xue-Feng. Design and simulation of a simple two-dimensional left-handed metamaterials. Acta Physica Sinica, 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [20] Ren Huai-Hui, Li Xu-Dong. 3D material microstructures design and numerical simulation. Acta Physica Sinica, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
Metrics
  • Abstract views:  532
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2025
  • Accepted Date:  05 June 2025
  • Available Online:  01 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回