-
To address the challenges of the complex design process and long optimization time for antenna radar cross section (RCS) reduction, this paper adopts the "first scattering then radiation" low-RCS antenna design concept and implements dual-polarized RCS reduction of the antenna based on the hybrid mechanism. A dual-polarized low-scattering metasurface antenna is proposed, which overcomes the drawbacks of traditional low-RCS antenna design methods. Firstly, a dual-polarized low-RCS metasurface antenna is designed based on the amplitude and phase control characteristics of the metasurface, achieving independent control of the reflected beams for different polarized incident waves. Secondly, drawing on the radiation structure of traditional patch antennas. A local adjustment is made to the metasurface based on the low RCS metasurface. The antenna radiation is achieved through coaxial feed excitation. Finally, combined with the current distribution adjustment of the radiation structure, the antenna radiation performance is rapidly optimized.
Through simulation and experimental verification, the proposed antenna not only has good radiation performance but also can achieve dual-polarized RCS reduction within and outside the band. Compared with the traditional low-RCS antenna design methods, the "first scattering then radiation" reverse design concept adopted in this paper and the new method of implementing dual-polarized RCS reduction of the antenna based on the hybrid mechanism effectively resolve the contradiction between radiation and low scattering caused by the compact structure of the metasurface antenna, greatly simplify the design process of the low-scattering metasurface antenna. The antenna uses a single-layer dielectric design to achieve RCS reduction, featuring a simple structure, compactness, and low profile.-
Keywords:
- electromagnetic metasurface /
- antenna /
- amplitude-phase modulation /
- low radar cross section
-
[1] Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nature Communications. 9 4334
[2] Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075
[3] Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96
[4] Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76
[5] Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T 2024 IEEE Antennas Wireless Propag. Lett. 23 2046
[6] Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793
[7] Ji K F, Cao X Y, Gao J, Yang H H, Li T, Jidi L Y 2022 IEEE Trans. Antennas Propag. 70 11537
[8] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239
[9] Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y 2021 IEEE Trans. Antennas Propag. 69 3332
[10] Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Li T, Li S J 2024 IEEE Trans. Antennas Propag. 73 149
[11] Ji K F, Zhou Y L, Yang H H, Li T, Li S J, Zhang Z Y 2025 IEEE Antennas Wireless Propag. Lett. (Early Access)
[12] Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Apllied Materials & Interfaces. 16 65635
[13] Zhang Z Y, Li S J, Zhou Y L, Li T, Cong L L, Feng Q, Zhao X L, Cao X Y 2024 Optics Express. 32 24469
[14] Jiang Y L, Tian Y X, Li J X, Yan C Y, Pan Y X 2024 IEEE Photonics Technology. Lett. 36 1117
[15] Yue H, Chen L, Yang Y Z, He L X, Shi X W 2019 IEEE Antennas Wireless Propag. Lett. 18 54
[16] Zhang T H, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665
[17] Pu M B, Ma X L, Li X, Guo Y H, Luo X G 2017 J. Mater. Chem. C. 5 436
[18] Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Optical Mater. 6 1800592
[19] Huang Y J, Luo J, Pu M B, Guo Y H, Zhao Z Y, Ma X L, Li X, Luo X G 2019 Adv. Sci. 6 1801691
[20] Xue J J, Jiang W, Gong S X 2017 International Journal of Antennas and Propagation. 2017 1260973
[21] Li T, Yang H H, Li Q, Jiadi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325
[22] Li T, Yang H H, Li Q, Liao J W, Gao K, Ji K F, Cao X Y 2024 Acta Phys. Sin. 73 124101 (in Chinese) [李桐、杨欢欢、李奇、廖嘉伟、高坤、季轲峰、曹祥玉 2024 物理学报 73 124101]
[23] Rana S, Jain P 2023 International Journal of Microwave and Wireless Technologies. 15 1108
[24] Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101 (in Chinese) [冯奎胜、李娜、杨欢欢 2021 物理学报 70 194101]
[25] Liu Y, Jia Y T, Zhang W B, Wang Y Z, Guo S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199
[26] Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572
[27] Sima B, Chen K, Luo X Y, Zhao J M, Feng Y J 2019 Phys. Rev. Appl.10 064043
[28] Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag.68 1426
[29] Yang Y J, Wang C C, Yang H L, Li S R, Zhou X F, Jin J 2024 IEEE Trans. Antennas Propag.72 6464
Metrics
- Abstract views: 177
- PDF Downloads: 1
- Cited By: 0