Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Latest Research Progress in Quantum Identity Authentication

XingFu Wang YanYan Zheng ShiPu Gu Qi Zhang Wei Zhong MingMing Du XiYun Li ShuTing Sheng AnLei Zhang Lan Zhou YuBo Sheng

Citation:

Latest Research Progress in Quantum Identity Authentication

XingFu Wang, YanYan Zheng, ShiPu Gu, Qi Zhang, Wei Zhong, MingMing Du, XiYun Li, ShuTing Sheng, AnLei Zhang, Lan Zhou, YuBo Sheng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The absolute security of quantum communication protocols relies on a critical premise: all participating parties are legitimate users. Ensuring the legitimacy of participant identities is paramount in complex real-world communication environments. Quantum Identity Authentication (QIA), leveraging fundamental principles of quantum mechanics to achieve unilateral or mutual authentication between communicating parties, constitutes an indispensable core component for building a comprehensive quantum secure communication system. It holds significant research value within the field of quantum communication.
    This review employs a comparative classification approach to systematically outline the research trajectory of QIA protocols. By categorizing protocols based on the required quantum resources and the types of quantum protocols employed, it analyzes the advantages and disadvantages of various categories in terms of efficiency, security, and practicality. Single-photon protocols demand low resources, are easy to implement, and compatible with existing optical components, but require high-efficiency single-photon detectors and exhibit weak noise resistance. Entangled-state protocols offer high security and strong eavesdropping resistance, particularly suitable for long-distance or multi-party authentication. However, they heavily depend on the preparation and maintenance of high-precision, stable multi-particle entanglement sources, resulting in high experimental complexity. Continuous-variable (CV) protocols achieve high transmission efficiency in short-distance metropolitan area networks and are compatible with classical optical communication equipment, making experiments relatively straightforward. Yet, they require high-precision modulation technology and are sensitive to channel loss. Hybrid protocols aim to balance resource efficiency and security while reducing reliance on a single quantum source, but their design is complex and may introduce new attack vectors. Quantum Key Distribution (QKD) framework protocols embed identity authentication within the key distribution process, making them suitable for scenarios requiring long-term secure key distribution, though they often depend on pre-shared keys or trusted third parties. Quantum Secure Direct Communication (QSDC) framework protocols integrate authentication with secure direct information transmission, offering high efficiency for real-time communication, but demand high channel quality. Measurement-Device-Independent QSDC (MDI-QSDC) represents a crucial development direction, resisting attacks on measurement devices. Quantum Teleportation (QT) framework protocols enable cross-node authentication and unconditional security, applicable to quantum relay networks, albeit with high experimental complexity. Entanglement swapping framework protocols can resist conspiracy attacks and are suitable for multi-party joint scenarios, but consume significant resources and rely on trusted third parties. Ping-pong protocol framework supports dynamic key updates and exhibits strong eavesdropping resistance, fitting for temporary authentication on mobile terminals, though it typically supports only unilateral authentication and requires a bidirectional channel.
    Subsequently, this review details our research group's latest QIA protocols, including a multi-party synchronous identity authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) states, and a tripartite QSDC protocol with identity authentication capabilities utilizing polarization-spatial super-coding. The GHZ-based multi-party synchronous authentication protocol leverages the strong correlations inherent in GHZ states to achieve simultaneous authentication among multiple parties. Through a carefully designed two-round decoy-state detection mechanism, it effectively resists both external eavesdropping and internal attacks originating from authenticated users, thereby enhancing the efficiency and security of identity management in large-scale quantum networks. The core innovation of the polarization-spatial super-coding tripartite QSDC protocol lies in its deep integration of the authentication process with information transmission utilizing the spatial degrees of freedom of single photons. This design accomplishes the identity verification of two senders and the transmission of secret information within a single protocol run, ensuring end-to-end security through a three-stage security check. This "authentication-as-communication" paradigm significantly improves the overall efficiency and practicality of the protocol. Its successful implementation also relies on advancements in quantum memory technology.
    Finally, the review provides an outlook on future research directions for quantum identity authentication and its application potential within quantum communication. QIA research needs to focus on reducing resource dependency, exploring more efficient protocol designs, further enhancing protocol integration and robustness, prioritizing the development of protocols adaptable to real-world environments, and actively investigating integration with novel scenarios. This comprehensive review aims to provide theoretical research foundations and technical support for the practical development of future quantum identity authentication.
  • [1]

    Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239

    [2]

    Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501

    [3]

    Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062

    [4]

    Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124

    [5]

    Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press) (in Chinese) [赵千川 2004 量子计算和量子信息(一)——量子计算部分 (北京: 清华大学出版社)]

    [6]

    Zhang Y D 2010 Advanced Quantum Mechanics 2nd ed. (Beijing: Peking University Press) (in Chinese) [张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)]

    [7]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10-12, 1984 p175

    [8]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [9]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [10]

    Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895

    [11]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [12]

    Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322

    [13]

    Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 EPL 140 58001

    [14]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [15]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648

    [16]

    Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7

    [17]

    Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302

    [18]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [19]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [20]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [21]

    Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950

    [22]

    Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144

    [23]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501

    [24]

    Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519

    [25]

    Hu X M, Wang Y, Li Y, Zhang Q, Pan J W 2019 Quantum Eng. 1 e13

    [26]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002

    [27]

    Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214

    [28]

    Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam.. Res. 1 93

    [29]

    Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15

    [30]

    Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73

    [31]

    Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4

    [32]

    Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146

    [33]

    Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017

    [34]

    Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154

    [35]

    Liu B, Gao Z, Xiao D, Huang W, Zhang Z, Xu B J 2022 Sci. China Phys. Mech. Astron. 65 240312

    [36]

    Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077

    [37]

    Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903

    [38]

    Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353

    [39]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12

    [40]

    Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22

    [41]

    Long G L, Zhang H R 2021 Sci. Bull. 66 1267

    [42]

    Liu X, Li Z Q, Wang Q L 2021 Sci. China Phys. Mech. Astron. 64 120311

    [43]

    Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012

    [44]

    Zhang H R, Zhou L, Sheng Y B, Long G L 2022 Light Sci. Appl. 11 83

    [45]

    Liu X, Li Z Q, Wang Q L 2022 Sci. China Phys. Mech. Astron. 65 120311

    [46]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367

    [47]

    Zhou L, Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311

    [48]

    Ying J W, Zhou L, Sheng Y B 2022 Chin. Phys. B 31 120303

    [49]

    Niu J L, Liu X C 2022 EPL 139 38001

    [50]

    Long G L, Zhou L, Sheng Y B 2022 Phys. Rev. Appl. 36 82

    [51]

    Das N, Paul G 2022 EPL 138 48001

    [52]

    Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201

    [53]

    Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036

    [54]

    Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149

    [55]

    Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303

    [56]

    Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305

    [57]

    Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83

    [58]

    Zhang H, Ji Z, Wang H, Wu W 2021 China Commun. 16 1

    [59]

    Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023

    [60]

    Li J X, Zhang Y S, Guo G C 2021 EPL 133 20004

    [61]

    Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369

    [62]

    Crépeau C, Salvail L 1995 International Conference on the Theory and Applications of Cryptographic Techniques (Berlin: Springer) p133

    [63]

    Zeng G H, Wang X B 1998 arXiv:quant-ph/9812022 [quant-ph]

    [64]

    Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57

    [65]

    Zhao W, Shi R H, Shi J J , Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410

    [66]

    Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Security 17 3264

    [67]

    Zhang X L 2009 Chin. Sci. Bull. 54 2018

    [68]

    Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236

    [69]

    Zawadzki P 2019 Quantum Inf. Process. 18 7

    [70]

    González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389

    [71]

    Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357

    [72]

    Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92

    [73]

    Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305

    [74]

    Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301

    [75]

    Chang Y, Xu C X, Zhang S B 2014 Chin. Sci. Bull. 59 2541

    [76]

    Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236

    [77]

    Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13

    [78]

    Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605

    [79]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photon. 9 397

    [80]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photon. 9 772

    [81]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photon. 9 773

    [82]

    Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201

    [83]

    Liu W J, Chen H W, Li Z Q 2009 Chin. Phys. B 18 4105

    [84]

    Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381

    [85]

    Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360

    [86]

    Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535

    [87]

    Curty M, Santos D J 2001 Phys. Rev. A 64 062309

    [88]

    Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306

    [89]

    Chang Y, Li X H, Zhang Z J 2015 Chin. Phys. B 24 050307

    [90]

    Zhou Z R, Sheng Y B, Niu P H 2020 Sci. China Phys. Mech. Astron. 63 230362

    [91]

    Das N, Paul G 2022 Quantum Inf. Process. 21 260

    [92]

    Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473

    [93]

    Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380

    [94]

    Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664

    [95]

    Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233

    [96]

    Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199

    [97]

    Wang X F, Gu S P, Sheng Y B, Zhou L 2023 EPL 142 68002

    [98]

    Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407

    [99]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2016 Nat. Photon. 8 234

    [100]

    Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602

    [101]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392

    [102]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41

    [103]

    Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676

  • [1] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, doi: 10.7498/aps.68.20181837
    [2] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.67.20172634
    [3] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, doi: 10.7498/aps.67.20180813
    [4] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, doi: 10.7498/aps.61.210502
    [5] Yue Xiao-Lin, Wang Jin-Dong, Wei Zheng-Jun, Guo Bang-Hong, Liu Song-Hao. A new multi-wavelength two-way quantum key distribution system with a single optical source. Acta Physica Sinica, doi: 10.7498/aps.61.184215
    [6] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, doi: 10.7498/aps.60.030303
    [7] Wei Zheng-Jun, Wan Wei, Wang Jin-Dong, Liao Chang-Jun, Liu Song-Hao. A new method to acquire the half-wave voltage by the quantum bit error rate in the deterministic quantum key distribution system. Acta Physica Sinica, doi: 10.7498/aps.60.094216.1
    [8] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, doi: 10.7498/aps.59.2193
    [9] Wang Jin-Dong, Qin Xiao-Juan, Wei Zheng-Jun, Liu Xiao-Bao, Liao Chang-Jun, Liu Song-Hao. An effective active phase compensation method for quantum key distribution system. Acta Physica Sinica, doi: 10.7498/aps.59.281
    [10] Wang Yu-Wu, Zhan You-Bang. A theoretical scheme for zero-knowledge proof quantum identity authentication. Acta Physica Sinica, doi: 10.7498/aps.58.7668
    [11] Wang Jin-Dong, Lu Wei, Zhao Feng, Liu Xiao-Bao, Guo Bang-Hong, Zhang Jing, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao. The experimental research on a stable free-space quantum key distribution system with low noise. Acta Physica Sinica, doi: 10.7498/aps.57.4214
    [12] Quan Dong-Xiao, Pei Chang-Xing, Zhu Chang-Hua, Liu Dan. New method of decoy state quantum key distribution with a heralded single-photon source. Acta Physica Sinica, doi: 10.7498/aps.57.5600
    [13] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, doi: 10.7498/aps.57.5605
    [14] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, doi: 10.7498/aps.57.4941
    [15] Guo Bang-Hong, Lu Yi-Qun, Wang Fa-Qiang, Zhao Feng, Hu Min, Lin Yi-Man, Liao Chang-Jun, Liu Song-Hao. Real-time low-frequency vibration phase drift tracking and auto-compensation in phase-coded quantum key distribution system. Acta Physica Sinica, doi: 10.7498/aps.56.3695
    [16] Zheng Li-Ming, Wang Fa-Qiang, Liu Song-Hao. The influence of dispersion and loss on quantum key distribution system. Acta Physica Sinica, doi: 10.7498/aps.56.2180
    [17] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, doi: 10.7498/aps.56.6434
    [18] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, doi: 10.7498/aps.55.4631
    [19] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, doi: 10.7498/aps.55.4642
    [20] Wu Guang, Zhou Chun-Yuan, Chen Xiu-Liang, Han Xiao-Hong, Zeng He-Ping. A stable long-distance quantum key distribution system. Acta Physica Sinica, doi: 10.7498/aps.54.3622
Metrics
  • Abstract views:  26
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  17 September 2025
  • /

    返回文章
    返回