Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of coaxial coated nanotubes on water transport in disjoint nanochannels

MENG Xianwen

Citation:

Influence of coaxial coated nanotubes on water transport in disjoint nanochannels

MENG Xianwen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The challenge in transporting water molecules through one-dimensional, large, disjoint nanochannels arises from the breaking of the water bridge. Even under significant pressure differences, water molecules are difficult to transport through these large disjoint nanochannels. Restoring the broken water bridge is crucial for maintaining continuous water transport through disjoint nanochannels. Current repairing methods, including the application of uniform or terahertz electric fields, are passive solutions. Once the electric fields are removed, it will stop working, causing the bridge to break again. In this study, molecular dynamics simulations are employed to investigate water transport through disjoint nanochannels with large nanogaps mediated by the coverage of coaxial nanochannels. The results reveal that as the diameter of the covered nanochannel decreases, the peak interaction between water molecules and the nanochannel decreases, which facilitates the reformation of the water bridge within the nanogap region. The water transfer rate through the disjoint nanochannel exhibits a non-monotonic dependence on the covered nanochannel diameter: it increases rapidly initially, then decreases with further increase in diameter, eventually reaching a relatively stable flow rate. Increasing the diameter of the covered nanochannel enhances water occupancy within the disjoint nanochannel, while the velocity and order parameter of water molecules display an initial increase followed by a decrease with further increase in diameter. These results offer significant insights into understanding the influence of covered nanochannels on water transport through disjoint nanochannels andproviding novel approaches for repairing broken water bridges in disjoint nanochannel systems.
  • 图 1  (a)模拟框架图, 包括2片平行的石墨烯, 1个断裂纳米管及其同轴包覆的完整纳米管和水层, 其中水分子用红白球表示, 石墨烯及断裂纳米管用青色表示, 压强方向如黑色箭头所示; (b)同轴包覆完整纳米管示意图, 该纳米管的直径为D; (c)断裂纳米管示意图, 该断裂纳米管的裂隙长度标记为L, 断裂纳米管由2个分离的纳米管及间隙组成

    Figure 1.  (a) Side view of the simulation framework, which includes two parallel sheets, a disjoint nanochannel covered by a coaxial nanochannel, and two water reservoirs. Carbon atoms are shown by the cyan balls, and water molecules are shown by the red balls and the white balls, respectively. The black arrows show the direction of the pressure difference. (b) The nanochannel with a diameter of D used to cover the disjoint nanochannel is displayed in blue. (c) The disjoint nanochannel with a nonogap length of L. The disjoint nanochannel is fabricated by two separated carbon nanotubes and a nanogap.

    图 2  水分子通过断裂纳米管的单位时间流量($V_{\mathrm{f}}$)是D的函数

    Figure 2.  The average water transfer rate $V_{\mathrm{f}}$, through disjoint nanochannels as a function of D.

    图 3  (a)断裂纳米管内的水分子占据数($N_{1}$)是D的函数; (b)断裂纳米管裂隙处的水分子占据数($N_{2}$)是D的函数

    Figure 3.  (a) The average water occupancy $N_{1}$ in disjoint nanochannels, as a function of D; (b) the average water occupancy $N_{2}$ within the nanogap region as a function of D.

    图 4  (a), (b) 当L = 0.80, 1.00 nm时, 断裂纳米管内的水分子与纳米管间勒纳德-琼斯势能是位置z的函数; (c)勒纳德-琼斯势能尖峰相对于D = 0 nm的断裂纳米管下降程度

    Figure 4.  (a), (b) The Lennard-Jones potential between water molecules and the disjoint nanochannel for L = 0.80, 1.00 nm as a function of position (z), respectively; (c) the peak change of the Lennard-Jones potential between water molecules and the disjoint nanochannel for L = 0.80, 1.00 nm compared to the peak of the interaction in the disjoint nanochannel with D = 0 nm, respectively.

    图 5  (a)—(c) D = 0, 0.93, 1.70 nm时, L = 0.80 nm的断裂纳米管内的水分子的结构图; (e)—(f) D = 0, 0.93, 1.70 nm时, L = 1.00 nm的断裂纳米管内的水分子的结构图

    Figure 5.  (a)–(c) The structure of water molecules in disjoint nanochannels with L = 0.80 nm for D = 0, 0.93, 1.70 nm, respectively; (e)–(f) the structure of water molecules in disjoint nanochannels with L = 1.00 nm for D = 0, 0.93, 1.70 nm, respectively.

    图 6  断裂纳米管内的水分子运动速度(v)是D的函数

    Figure 6.  The average water velocity(v) in the disjoint nanochannels as a function of D.

    图 7  断裂纳米管内的水分子序参量(S)是D的函数

    Figure 7.  The average order parameter of water molecules (S) in disjoint nanochannels as a function of D.

  • [1]

    孙志伟, 何燕, 唐元政 2021 物理学报 70 060201Google Scholar

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar

    [2]

    章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 物理学报 72 084207Google Scholar

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar

    [3]

    Lau A W C, Sokoloff J B 2024 Phys. Rev. Lett. 132 194001Google Scholar

    [4]

    Wang Z H, Liu Y, Li Y Q, Qu Y Y, Zhou R H, Zhao M W, Li W F 2025 Nano Lett. 25 8458Google Scholar

    [5]

    Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar

    [6]

    Tao J B, Song X Y, Bao B, Zhao S L, Liu H L 2020 Chem. Eng. Sci. 219 115602Google Scholar

    [7]

    李伟健, 周晓艳, 陆杭军 2024 物理学报 73 094702Google Scholar

    Li W J, Zhou X Y, Lu H J 2024 Acta Phys. Sin. 73 094702Google Scholar

    [8]

    Liu Y, Zhu W D, Jiang J, Zhu C Q, Liu C, Slater B, Ojamae L, Francisco J S, Zeng X C 2021 P. Natl. Acad. Sci. USA 118 e2104442118Google Scholar

    [9]

    Camargo A P, Jusufi A, Lee A G, Koplik J, Morris J F, Giovambattista N 2024 Langmuir 40 18439Google Scholar

    [10]

    Liu Y, Jiang J, Pu Y Y, Francisco J S, Zeng X C 2023 ACS Nano 17 6922Google Scholar

    [11]

    Du W, Wang Y J, Yang J W, Chen J G 2024 Phys. Rev. E 109 L062103Google Scholar

    [12]

    Kohler M H, da Silva L B 2016 Chem. Phys. Lett. 645 38Google Scholar

    [13]

    Zhao K W, Wu H Y, Han B S 2017 J. Chem. Phys. 147 164705Google Scholar

    [14]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H F, Bao Z N 2011 Nat. Nanotechnol. 6 788Google Scholar

    [15]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A 2017 Science 357 792Google Scholar

    [16]

    Martincic M, Tobias G 2015 Expert Opin. Drug Del. 12 563Google Scholar

    [17]

    Mun T J, Kim S H, Park J W, Moon J H, Jang Y, Huynh C, Baughman R H, Kim S J 2020 Adv. Funct. Mater. 30 2000411Google Scholar

    [18]

    Li J Y, Yang Z X, Fang H P, Zhou R H, Tang X W 2007 Chin. Phys. Lett. 24 2710Google Scholar

    [19]

    Liu Y C, Wang Q 2005 Phys. Rev. B 72 085420Google Scholar

    [20]

    Sam A, Prasad K V, Sathian S P 2019 Phys. Chem. Chem. Phys. 21 6566Google Scholar

    [21]

    Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar

    [22]

    Meng X W, Wang L Y 2023 Chem. Phys. Lett. 829 140765Google Scholar

    [23]

    Meng X W, Wang L Y 2024 Chem. Phys. Lett. 849 141424Google Scholar

    [24]

    Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar

    [25]

    Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar

    [26]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F 2021 Chem. Phys. Lett. 762 138139Google Scholar

    [27]

    Zhang Q L, Wang Y J, Yang H, Deng Y F, Wang T Q, Yang R Y, Zhu Z 2025 Phys. Fluids 37 012031Google Scholar

    [28]

    Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar

    [29]

    Meng X W, Li Y 2022 Physica E 135 114980Google Scholar

    [30]

    Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar

    [31]

    Wu Y, Wang Z, Li S, Su J Y 2024 Phys. Fluids 36 022006Google Scholar

    [32]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [33]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [34]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar

    [35]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [36]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [37]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar

    [38]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar

    [39]

    Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, Huang J P 2024 Rev. Mod. Phys. 96 015002Google Scholar

Metrics
  • Abstract views:  397
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2025
  • Accepted Date:  05 August 2025
  • Available Online:  25 August 2025
  • /

    返回文章
    返回