-
The challenge of transporting water molecules through one-dimensional large disjoint nanochannels arises from the break of the water bridge. Even under significant pressure differences, water molecules are difficult to transport through these large disjoint nanochannels. Restoring the broken water bridge is crucial for maintaining continuous water transport through disjoint nanochannels. Current repair methods, including the application of uniform or terahertz electric fields, are passive solutions that cease to work once the fields are removed, resulting in the reappearance of the broken bridge. In this study, molecular dynamics simulations are employed to investigate water transport through disjoint nanochannels featuring a large nanogap, mediated by covering a coaxial nanochannel. The results reveal that as the diameter of the covered nanochannel decreases, the peak interaction between water molecules and the nanochannel decreases, facilitating the reformation of the water bridge within the nanogap region. The water transfer rate through the disjoint nanochannel exhibits a non-monotonic dependence on the covered nanochannel diameter: it increases rapidly initially, then decreases with further diameter expansion, eventually reaching a relatively stable flow rate. Increasing the diameter of the covered nanochannel enhances water occupancy within the disjoint nanochannel, while the velocity and order parameter of water molecules display an initial increase followed by a decrease with further diameter expansion. These results provide significant insights into understanding the influence of covered nanochannels on water transport through disjoint nanochannels and developing novel approaches for repairing broken water bridges in disjoint nanochannel systems
-
Keywords:
- Water molecules /
- Disjoint nanochannels /
- Repair
-
[1] Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201 (in Chinese) [孙志伟, 何燕, 唐元政 2021 物理学报 70 060201]
[2] Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207 (in Chinese)[章其林,王瑞丰,周同,王允杰,刘琪 2023 物理学报 72 084207]
[3] Lau A W C, Sokoloff J B, 2024 Phys. Rev. Lett. 132 194001
[4] Wang Z H, Liu Y, Li Y Q, Qu Y Y, Zhou R H, Zhao M W, Li W F, 2025 Nano Lett. 25 8458
[5] Sahimi M, Ebrahimi F, 2019 Phys. Rev. Lett. 122 214506
[6] Tao J B, Song X Y, Bao B, Zhao S L, Liu H L, 2020 Chem. Eng. Sci. 219 115602
[7] Li W J, Zhou X Y, Lu H J, 2024 Acta Phys. Sin. 73 094702 (in Chinese) [ 李伟健, 周晓艳, 陆杭军 2024 物理学报 73 094702]
[8] Liu Y, Zhu W D, Jiang J, Zhu C Q, Liu C, Slater B, Ojamae L, Francisco J S, Zeng X C, 2021 P. Natl. Acad. Sci. USA 118 e2104442118
[9] Camargo A P, Jusufi A, Lee A G, Koplik J, Morris J F, Giovambattista N, 2024 Langmuir, 40 18439
[10] Liu Y, Jiang J, Pu Y Y, Francisco J S, Zeng X C, 2023 ACS Nano 17 6922
[11] Du W, Wang Y J, Yang J W, Chen J G, 2024, Phys. Rev. E 109 L062103
[12] Kohler M H, da Silva L B, 2016 Chem. Phys. Lett. 645 38
[13] Zhao K W, Wu H Y, Han B S, 2017 J. Chem. Phys. 147 164705
[14] Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H F, Bao Z N, 2011 Nat. Nanotechnol. 6 788
[15] Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A, 2017 Science 357 792
[16] Martincic M, Tobias G, 2015 Expert Opin. Drug Del. 12 563
[17] Mun T J, Kim S H, Park J W, Moon J H, Jang Y, Huynh C, Baughman R H, Kim S J, 2020 Adv. Funct. Mater. 30 2000411
[18] Li J Y, Yang Z X, Fang H P, Zhou R H, Tang X W, 2007 Chin. Phys. Lett. 24 2710
[19] Liu Y C, Wang Q, 2005 Phys. Rev. B 72 085420
[20] Sam A, Prasad K V, Sathian S P, 2019 Phys. Chem. Chem. Phys. 21 6566
[21] Qiu T, Meng X W, Huang J P, 2015 J. Phys. Chem. B 119 1496
[22] Meng X W, Wang L Y, 2023 Chem. Phys. Lett. 829 140765
[23] Meng X W, Wang L Y, 2024 Chem. Phys. Lett. 849 141424
[24] Meng X W, Shen L, 2020 Chem. Phys. Lett. 739 137029
[25] Ebrahimi F, Maktabdaran G R, Sahimi M, 2020 J. Phys. Chem. B 124 8340
[26] Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F, 2021 Chem. Phys. Lett. 762 138139
[27] Zhang Q L, Wang Y J, Yang H, Deng Y F, Wang T Q, Yang R Y, Zhu Z, 2025 Phys. Fluids 37 012031
[28] Meng X W, Li Y, Shen L, Yang X Q, 2020 EPL 131 20003
[29] Meng X W, Li Y, 2022 Physica E 135 114980
[30] Wang F, Zhang X K, Li S, Su J Y, 2022 J. Mol. Liq. 362 119719
[31] Wu Y, Wang Z, Li S, Su J Y, 2024 Phys. Fluids 36 022006
[32] Hummer G, Rasaiah J C, Noworyta J P, 2001 Nature 414 188
[33] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L, 1983 J. Chem. Phys. 79 926
[34] Hess B, Kutzner C, Van De Spoel D, Lindahl E, 2008 J. Chem. Theory. Comp. 4 435
[35] Nose S, 1984 J. Chem. Phys. 81 511
[36] Hoover W G, 1985 Phys. Rev. A 31 1695
[37] Wan R Z, Li J Y, Lu H J, Fang H P, 2005 J. Am. Chem. Soc. 127 7166
[38] Li J Y, Gong X J, Lu H J, Li D, Fang H P, 2007 P. Natl. Acad. Sci. USA 104 3687
[39] Darden T A, York D M, Pedersen L G, 1993 J. Chem. Phys. 98 10089
[40] Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, Huang J P, 2024 Rev. Mod. Phys. 96 015002
Metrics
- Abstract views: 209
- PDF Downloads: 2
- Cited By: 0