Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of defects on electronic property of Sn1–xPbxTe/Pb heterostructure

YI Zhaoxia YANG Hao ZHENG Weiyan XIE Bangjin GAO Zehua CHEN Weijiong YI Hemian LIU Xiaoxue LIU Liang GUAN Dandan WANG Shiyong ZHENG Hao LIU Canhua LI Yaoyi JIA Jinfeng

Citation:

Influence of defects on electronic property of Sn1–xPbxTe/Pb heterostructure

YI Zhaoxia, YANG Hao, ZHENG Weiyan, XIE Bangjin, GAO Zehua, CHEN Weijiong, YI Hemian, LIU Xiaoxue, LIU Liang, GUAN Dandan, WANG Shiyong, ZHENG Hao, LIU Canhua, LI Yaoyi, JIA Jinfeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • SnTe-type topological crystalline insulators (TCIs) possess multiple Dirac-like topological surface states under the mirror-symmetry protection. Superconducting SnTe-type TCIs are predicted to form multiple Majorana zero modes (MZMs) in a single magnetic vortex. For the spatially isolated MZMs, there is only one MZM in a single vortex at surface. However, experimental demonstration of coupling the two isolated MZMs by changing wire length or intervortex distance is very challenging. For the multiple MZMs, two or more MZMs can coexist together in a single vortex. Thus, the novel property is expected to significantly reduce the difficulty in producing hybridization between MZMs. Recently, the experimental evidence for multiple MZMs has been observed in a single vortex of the superconducting SnTe/Pb heterostructure. However, SnTe is a heavily p-type semiconductor which is very difficult to induce the p-type to n-type transition via doping or alloying. The study on the Fermi-level tuning of SnTe-type TCIs is important for detecting and manipulating multiple MZMs. In this work, we report the influence of defects, such as film edge, grain boundary and dislocation, on the electronic property of Sn1–xPbxTe/Pb. The Sn1–xPbxTe films are prepared on the Pb (111) films grown on the Si (111) substrate by the molecular beam epitaxial technology. The structural and electronic properties of the Sn1–xPbxTe films are detected in situ by using low-temperature scanning tunneling microscopy and spectroscopy. The differential conductance tunneling spectra show that the minima of dI/dV spectra taken in the areas near the film edge, the grain boundary and the dislocation of Sn1–xPbxTe grown on Pb can be significantly changed to the energy very close to the Fermi level or even about -0.2 eV below the Fermi level, whereas the minima of dI/dV spectra taken in the areas far away from the defects are always at about 0.2 eV above the Fermi level. It indicates that these quasi one-dimensional defects, rather than Pb alloying, play an important role in modifying electronic property of the Sn1–xPbxTe/Pb heterostructure. Moreover, the Pb alloying will suppress the formation of zero-energy peak in the vortex. These results are expected to develop the method of the Fermi-level tuning for the SnTe-type topological superconducting devices that do not require doping or alloying.
  • 图 1  Sn1–xPbxTe/Pb的薄膜边缘附近的STM和STS测量 (a)在190 ℃的Pb膜上沉积SnTe得到的平整薄膜的STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b)在图(a)中红点处测的dI/dV谱, 样品偏压Vset = 0.35 V, 隧穿电流Iset = 0.1 nA; (c)薄膜边缘附近的STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (d)沿图(c)中绿色线条处的高度轮廓图, 沟壑的深度约9 nm; (e) 在图(c)中黑点处测的dI/dV谱, 样品偏压Vset = 0.20 V, 隧穿电流Iset = 0.1 nA; (f)在图(c)中蓝点处测的dI/dV谱, 样品偏压Vset = 0.35 V, 隧穿电流Iset = 0.1 nA; (g)在图(c)黑点处和(h)蓝点处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, 在图(g)和(h)中Pb含量分别为23.2%和25.1%

    Figure 1.  STM and STS measurements near the edge of Sn1–xPbxTe film grown on Pb: (a) STM image (450 nm × 450 nm) of the flat film obtained by deposition of SnTe on Pb film at 190 ℃ (Vset = 2 V, Iset = 0.1 nA); (b) dI/dV spectrum taken at the red dot in Fig. (a) (Vset = 0.35 V, Iset = 0.1 nA); (c) STM image (450 nm × 450 nm) near the film edge (Vset = 2 V, Iset = 0.1 nA); (d) line profile taken along the green line in (c), the depth of the trench is about 9 nm; (e) dI/dV spectra taken at the black dot in (c)(Vset = 0.20 V, Iset = 0.1 nA); (f) dI/dV spectra taken at the blue dot in (c)(Vset = 0.35 V, Iset = 0.1 nA); (g), (h) atomically resolved STM images (10 nm × 10 nm) taken at the black and blue dots in (c), respectively. Vset = 0.8 V, Iset = 0.1 nA, the Pb content of (g) and (h) are 23.2% and 25.1%.

    图 2  Sn1–xPbxTe/Pb的畴界附近的STM和STS测量 (a)在Pb膜上先室温沉积20 nm厚的SnTe然后在180 ℃继续沉积20 nm厚的SnTe得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b)—(e)分别为在图(a)中A1—A4 方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, 在图(b)—(e)中Pb含量分别为25.3%, 16.6%, 32.7%, 7.9%; (f)图(c)中D1—D3 点处测的dI/dV谱, 对于dI/dV谱D1, 样品偏压Vset = 0.40 V, 隧穿电流Iset = 0.1 nA, 对于dI/dV谱D2, 样品偏压Vset = 0.20 V, 隧穿电流Iset = 0.1 nA, 对于dI/dV谱D3, 样品偏压Vset = 0.25 V, 隧穿电流Iset = 0.1 nA

    Figure 2.  STM and STS measurements near the grain boundary of Sn1–xPbxTe film grown on Pb: (a) STM image (200 nm × 200 nm) of the sample obtained by deposition of 20 nm thick SnTe on Pb film at room temperature and then further deposition of 20 nm thick SnTe at 180 ℃ (Vset = 2 V, Iset = 0.1 nA); (b)–(e) atomically resolved STM images (10 nm × 10 nm) taken at the squares A1—A4 in (a), respectively, Vset = 0.8 V, Iset = 0.1 nA, the Pb content of (b)–(e) are 25.3%, 16.6%, 32.7% and 7.9%; (f) dI/dV spectra taken at the dots D1—D3 in (a), respectively, for the dI/dV spectrum D1, Vset = 0.40 V, Iset = 0.1 nA, for the dI/dV spectrum D2, Vset = 0.20 V, Iset = 0.1 nA, for the dI/dV spectrum D3, Vset = 0.25 V, Iset = 0.1 nA.

    图 3  Sn1–xPbxTe/Pb的位错附近的STM和STS测量 (a)在Pb膜上室温沉积40 nm厚的SnTe然后在100 ℃退火3 h得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b) 在图(a)中红色方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, Pb含量为20.2%; (c)在图(a)中红色方框和蓝色箭头处测的dI/dV谱, 对于红色dI/dV谱, 样品偏压Vset = 0.40 V, 隧穿电流Iset = 0.1 nA, 对于蓝色dI/dV谱, 样品偏压Vset = 0.10 V, 隧穿电流Iset = 0.1 nA; (d) 在Pb膜上室温沉积40 nm厚的SnTe得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (e)在图(d)中红色方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.7 V, 隧穿电流Iset = 0.1 nA; (f) 在图(d)中红色方框处测的dI/dV谱, 样品偏压Vset = 0.58 V, 隧穿电流Iset = 0.1 nA.

    Figure 3.  STM and STS measurements near the dislocation of Sn1–xPbxTe film grown on Pb: (a) STM image (200 nm × 200 nm) of the sample obtained by deposition of 40 nm thick SnTe on Pb film at room temperature and followed by annealing at 100 ℃ for 3 h (Vset = 2 V, Iset = 0.1 nA); (b) atomically resolved STM image (10 nm × 10 nm) taken at the red square in (a), Vset = 0.8 V, Iset = 0.1 nA, the Pb content is 20.2%; (c) dI/dV spectra taken at the red square and blue arrow in (a), respectively, for the red dI/dV spectrum, Vset = 0.40 V, Iset = 0.1 nA, for the blue dI/dV spectrum, Vset = 0.10 V, Iset = 0.1 nA; (d) STM image (200 nm × 200 nm) of the sample obtained by deposition of 40 nm thick SnTe on Pb film at room temperature (Vset = 2 V, Iset = 0.1 nA); (e) atomically resolved STM image (10 nm × 10 nm) taken at the red square in (d), Vset = 0.7 V, Iset = 0.1 nA; (f) dI/dV spectrum taken at the red square in (d), Vset = 0.58 V, Iset = 0.1 nA.

    图 4  合金元素Pb对磁通束缚态的影响 (a)在190 ℃的Pb膜上沉积SnTe得到的样品表面的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA; (b) 该平整薄膜的大范围STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (c)相应的零偏压dI/dV映射图, 磁场强度B = 0.02 T, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 6 mV, 隧穿电流Iset = 0.1 nA; (d)沿图(c)中绿色线条处测的一系列dI/dV谱, 样品偏压Vset = 3 mV, 隧穿电流Iset = 0.1 nA; (e)在180 ℃的Pb膜上共沉积SnTe和PbTe得到的样品表面的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.7 V, 隧穿电流Iset = 0.1 nA. Pb含量为19.2%; (f)该平整薄膜的大范围STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (g)相应的零偏压dI/dV映射图, 磁场强度B = 0.04 T, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 6 mV, 隧穿电流Iset = 0.1 nA; (h)沿图(g)中绿色线条处测的一系列dI/dV谱, 样品偏压Vset = 3 mV, 隧穿电流Iset = 0.1 nA

    Figure 4.  Effect of alloying element Pb on vortex bound states: (a) Atomically resolved STM image (10 nm × 10 nm) taken on the surface of the sample obtained by deposition of SnTe on Pb film at 190 ℃ (Vset = 0.8 V, Iset = 0.1 nA); (b) large-scale STM image (450 nm × 450 nm) of the flat film (Vset = 2 V, Iset = 0.1 nA); (c) corresponding zero-bias dI/dV map under magnetic field of B = 0.02 T (450 nm × 450 nm, Vset = 6 mV, Iset = 0.1 nA); (d) series of dI/dV spectra taken alone the green line in (c) (Vset = 3 mV, Iset = 0.1 nA); (e) atomically resolved STM image (10 nm × 10 nm) taken on the surface of the sample obtained by co-deposition of SnTe and PbTe on Pb film at 180 ℃ (Vset = 0.7 V, Iset = 0.1 nA), the Pb content is 19.2%; (f) large-scale STM image (450 nm × 450 nm) of the flat film (Vset = 2 V, Iset = 0.1 nA); (g) corresponding zero-bias dI/dV map under magnetic field of B = 0.04 T (450 nm × 450 nm, Vset = 6 mV, Iset = 0.1 nA); (h)series of dI/dV spectra taken alone the green line in (g) (Vset = 3 mV, Iset = 0.1 nA).

  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    李耀义, 贾金锋 2019 物理学报 68 137401Google Scholar

    Li Y Y, Jia J F 2019 Acta Phys. Sin. 68 137401Google Scholar

    [3]

    何映萍, 洪健松, 刘雄军 2020 物理学报 69 110302Google Scholar

    He Y P, Hong J S, Liu X J 2020 Acta Phys. Sin. 69 110302Google Scholar

    [4]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [5]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [6]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [7]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [8]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [9]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056

    [10]

    Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook S J, Wang Z Q, Gao H J 2022 Nature 606 890Google Scholar

    [11]

    Yuan Y H, Pan J, Wang X T, Fang Y Q, Song C L, Wang L L, He K, Ma X C, Zhang H J, Huang F Q, Li W, Xue Q K 2019 Nat. Phys. 15 1046Google Scholar

    [12]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [13]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402Google Scholar

    [14]

    Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141Google Scholar

    [15]

    Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401Google Scholar

    [16]

    Kobayashi S, Furusaki A 2020 Phys. Rev. B 102 180505Google Scholar

    [17]

    Luo X J, Pan X H, Shi Y L, Wu F C 2025 Phys. Rev. B 111 144501Google Scholar

    [18]

    Liu T T, Wan C Y, Yang H, Zhao Y J, Xie B J, Zheng W Y, Yi Z X, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Liu J W, Li Y Y, Jia J F 2024 Nature 633 71Google Scholar

    [19]

    Wang J F, Wang N, Huang H Q, Duan W H 2016 Chin. Phys. B 25 117313Google Scholar

    [20]

    Zhang D M, Baek H, Ha J, Zhang T, Wyrick J, Davydov A V, Kuk Y, Stroscio J A 2014 Phys. Rev. B 89 245445Google Scholar

    [21]

    Zeljkovic I, Walkup D, Assaf B A, Scipioni K L, Sankar R, Chou F C, Madhavan V 2015 Nat. Nanotechnol. 10 849Google Scholar

    [22]

    Liu T T, Yi Z X, Xie B J, Zheng W Y, Guan D D, Wang S Y, Zheng H, Liu C H, Yang H, Li Y Y, Jia J F 2024 Sci. China-Phys. Mech. Astron. 67 286811Google Scholar

    [23]

    Xie B J, Yi Z X, Zheng W Y, Gao Z H, Guan D D, Liu X X, Liu L, Wang S Y, Zheng H, Liu C H, Yang H, Li Y Y, Jia J F 2025 Nano Lett. 25 7981Google Scholar

    [24]

    Liu W, Hu Q, Wang X, Zhong Y, Yang F, Kong L, Cao L, Li G, Peng Y, Okazaki K, Kondo T, Jin C, Xu J, Gao H J, Ding H 2022 Quantum Front. 1 20Google Scholar

    [25]

    Wan C Y, Zhao Y J, Li Y Y, Jia J F, Liu J W 2024 Quantum Front. 3 20Google Scholar

    [26]

    Mandal P S, Springholz G, Volobuev V V, Caha O, Varykhalov A, Golias E, Bauer G, Rader O, Sánchez-Barriga J 2017 Nat. Commun. 8 968Google Scholar

    [27]

    Volobuev V V, Mandal P S, Galicka M, Caha O, Sánchez-Barriga J, Di Sante D, Varykhalov A, Khiar A, Picozzi S, Bauer G, Kacman P, Buczko R, Rader O, Springholz G 2017 Adv. Mater. 29 1604185Google Scholar

    [28]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [29]

    Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407Google Scholar

    [30]

    Shen P C, Su C, Lin Y X, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z Y, Mao N N, Wang J T, Tung V C, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J 2021 Nature 593 211Google Scholar

    [31]

    Yang Z, Kim C, Lee K Y, Lee M, Appalakondaiah S, Ra C H, Watanabe K, Taniguchi T, Cho K, Hwang E, Hone J, Yoo W J 2019 Adv. Mater. 31 1808231Google Scholar

    [32]

    Parto K, Pal A, Chavan T, Agashiwala K, Yeh C H, Cao W, Banerjee K 2021 Phys. Rev. Appl. 15 064068Google Scholar

    [33]

    Yang H, Li Y Y, Liu T T, Xue H Y, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Jia J F 2019 Adv. Mater. 31 1905582Google Scholar

    [34]

    Yang H, Li Y Y, Liu T T, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Jia J F 2020 Phys. Rev. Lett. 125 136802Google Scholar

    [35]

    Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K, Ando Y 2013 Phys. Rev. B 87 155105Google Scholar

    [36]

    Liu X C, Choi M S, Hwang E, Yoo W J, Sun J 2022 Adv. Mater. 34 2108425Google Scholar

    [37]

    Yu H, Gupta S, Kutana A, Yakobson B I 2021 J. Phys. Chem. Lett. 12 4299Google Scholar

    [38]

    Nill K W, Calawa A R, Harman T C 1970 Appl. Phys. Lett. 16 375Google Scholar

    [39]

    Springholz G, Wiesauer K 2002 Phys. Rev. Lett. 88 015507

    [40]

    Renner C, Kent A D, Niedermann P, Fischer Ø, Lévy F 1991 Phys. Rev. Lett. 67 1650Google Scholar

    [41]

    Ning Y X, Song C L, Wang Y L, Chen X, Jia J F, Xue Q K, Ma X C 2010 J. Phys.: Condens. Matter 22 065701

    [42]

    Liu Y, Li Y Y, Gilks D, Lazarov V K, Weinert M, Li L 2013 Phys. Rev. Lett. 110 186804Google Scholar

    [43]

    Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K, Li L 2014 Nat. Phys. 10 294Google Scholar

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, doi: 10.7498/aps.73.20240560
    [2] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, doi: 10.7498/aps.71.20211157
    [3] Li Yuan, Deng Han-Bin, Wang Cui-Xiang, Li Shuai-Shuai, Liu Li-Min, Zhu Chang-Jiang, Jia Ke, Sun Ying-Kai, Du Xin, Yu Xin, Guan Tong, Wu Rui, Zhang Shu-Yuan, Shi You-Guo, Mao Han-Qing. Surface and electronic structure of antiferromagnetic axion insulator candidate EuIn2As2. Acta Physica Sinica, doi: 10.7498/aps.70.20210783
    [4] Li Xiang-Cao, Liu Bao-An, Li Meng, Yan Chun-Yan, Ren Jie, Liu Chang, Ju Xin. Photoluminescence spectrum study of defects of potassium dihydrogen phosphate crystals irradiated by different laser fluences. Acta Physica Sinica, doi: 10.7498/aps.69.20200482
    [5] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, doi: 10.7498/aps.68.20191631
    [6] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20181681
    [7] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [8] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, doi: 10.7498/aps.65.116801
    [9] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, doi: 10.7498/aps.65.226801
    [10] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, doi: 10.7498/aps.64.078101
    [11] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, doi: 10.7498/aps.60.037301
    [12] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, doi: 10.7498/aps.60.116803
    [13] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan. Numerical analysis of two-dimensional magnetophotonic crystals with structural defects. Acta Physica Sinica, doi: 10.7498/aps.58.3532
    [14] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, doi: 10.7498/aps.54.824
    [15] Sun Xian-Kai, Lin Bi-Xia, Zhu Jun-Jie, Zhang Yang, Fu Zhu-Xi. Studies on the strain and its effect on defects in heteroepitaxial ZnO films prepared by LP-OCVD method. Acta Physica Sinica, doi: 10.7498/aps.54.2899
    [16] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, doi: 10.7498/aps.54.284
    [17] Yu Tian-Bao, Liu Nian-Hua. Propagation of optical pulses through one-dimensional photonic crystals with a dispersive and gain defect layer. Acta Physica Sinica, doi: 10.7498/aps.53.3049
    [18] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, doi: 10.7498/aps.50.517
    [19] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.49.1316
    [20] TANG XUE-FENG, GU MU, TONG HONG-YONG, LIANG LING, YAO MING-ZHEN, CHEN LING-YAN, LIAO JING-YING, SHEN BIN-FU, QU XIANG-DONG, YIN ZHI-WEN, XU WEI-XIN, WANG JING-C HENG. A STUDY ON La-DOPED PbWO4 SCINTILLATING CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.49.2007
Metrics
  • Abstract views:  320
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2025
  • Accepted Date:  12 September 2025
  • Available Online:  18 September 2025
  • /

    返回文章
    返回