Finite size effect of the ballistic depositionmodel with shadowing
Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng
Department of Physics,China University of Mining and Technology,Xuzhou 221116,China
Abstract The model of ballistic deposition (BD) with shadowing means that the tilt incidence of particles in a certain angle of distribution is taken into account based on the BD model. In this paper,in order to investigate the finite size effect and the scaling properties of the BD with shadowing,the extrapolation method is used to determine the asymptotic scaling exponents of the model in the large-size limit. The simulation results illustrate that the finite size effect on BD with shadowing is different from that on BD, and the shadowing as a nonlocal interation can significantly change the scaling properties of BD model.
Key words :
shadowing effect
ballistic deposition model
finite size effect
dynamic scaling
Received: 2010-04-16
Published: 2011-03-15
[1] Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium (Cambridge: Cambridge University Press)
[2] Barabasi A L,Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)
[3] Family F, Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)
[4] Family F, Vicsek T 1985 J. Phys. A 18 L75
[5] Edwards S F, Wilkinson D R 1982 Proc. R. Soc. London A 381 17
[6] Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889
[7] López J M, Rodriguez M A, Cuerno R 1997 Phys. Rev. E 56 3993
[8] López J M, Rodriguez M A, Cuerno R 1997 Physica A 246 329
[9] Pang N N, Tzeng W J 2004 Phys. Rev. E 70 036115
[10] Chin C S, Nijs M D 1999 Phys. Rev. E 59 2633
[11] Aaro Reis F D A 2004 Phys. Rev. E 70 031607
[12] Aaro Reis F D A 2001 Phys. Rev. E 63 056116
[13] Aaro Reis F D A 2002 Physica A 316 250
[14] Costa B S, Euzébio J A R, Aaro Reis F D A 2003 Physica A 328 193
[15] Aaro Reis F D A 2006 Physica A 364 190
[16] Hu B, Tang G 2002 Phys. Rev. E 66 026105
[17] Tang G, Ma B K 2002 Acta Phys. Sin. 51 994 (in Chinese) [唐 刚、马本堃 2002 物理学报 51 994]
[18] Tang G, Ma B K 2001 Acta Phys. Sin. 50 851 (in Chinese) [唐 刚、马本堃 2001 物理学报 50 851]
[19] Hao D P, Tang G, Xia H, Chen H, Zhang L M, Xun Z P 2007 Acta Phys. Sin. 56 2018 (in Chinese) [郝大鹏、唐 刚、夏 辉、陈 华、张雷明、寻之朋 2007 物理学报 56 2018]
[20] Pelliccione M, Lu T M 2008 Evolution of Thin Film Morphology (London: Springer-Verlag)
[21] Yu J G, Amar J G 2002 Phys. Rev. E 66 021603
[22] Ramasco J J, López J M, Rodríguez M A 2000 Phys. Rev. Lett. 84 2199
[23] López J M, Castro M, Gallego R 2005 Phys. Rev. Lett. 94 166103
[1]
Xie Yu-Ying,Tang Gang,Xun Zhi-Peng,Han Kui,Xia Hui,Hao Da-Peng,Zhang Yong-Wei,Li Yan. Numerical simulation of dynamic scaling behavior of the etching model on randomly diluted lattices [J]. Acta Phys. Sin., 2012, 61(7): 070506.
[2]
Hao Da-Peng,Tang Gang,Xia Hui,Han Kui,Xun Zhi-Peng. Effects of shadowing on the scaling behavior of the ballistic deposition model} Technology (Grant No. 2008A035), and the Fundamental Research Funds for the Central Universities(Grant No.2010LKWL04-CUMT). [J]. Acta Phys. Sin., 2012, 61(2): 028102.
[3]
Zhang Yong-Wei,Tang Gang,Han Kui,Xun Zhi-Peng,Xie Yu-Ying,Li Yan. Numerical simulations of dynamic scaling behavior of the etching model on fractal substrates [J]. Acta Phys. Sin., 2012, 61(2): 020511.
[4]
Hao Da-Peng, Tang Gang, Xia Hui, Chen Hua, Zhang Lei-Ming, Xun Zhi-Peng. Self-consistent mode-coupling theory of the nonlocal Sun-Guo-Grant equation [J]. Acta Phys. Sin., 2007, 56(4): 2018-2023.
[5]
Yang Ji-Jun, Xu Ke-Wei. Surface dynamic evolution of Ta film growth in the initial stage [J]. Acta Phys. Sin., 2007, 56(10): 6023-6027.
[6]
Xie Yan-Bo, Wang Bing-Hong, Quan Hong-Jun, Yang Wei-Song, Wang Wei-Ning. Finite size effect in EZ model [J]. Acta Phys. Sin., 2003, 52(10): 2399-2403.