Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses

Xu Si-Wei Wang Li Shen Xiang

Citation:

Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses

Xu Si-Wei, Wang Li, Shen Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we prepare several GexSb20Se80-x glasses (x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%, and 25 mol%), and measure their Raman and X-ray photoelectron spectra (Ge 3d, Sb 4d, and Se 3d) in order to understand the evolution of the glass structure with chemical composition. We further decompose the spectra into different structural units according to the assignments of these structural units in the previous literature. It is found that the structural units of SeSeSe trimers exist in the Se-rich glasses, but the number of the structural units of trimers decreases rapidly with the increase of Ge concentration and finally becomes zero in Ge15Sb20Se65 glass. With the increase of Ge concentration, the quantity of GeSe4/2 tetrahedral structures increases, but the number of SbSe3/2 pyramidal structures remains almost unchanged in the Se-rich glasses. On the other hand, the numbers of GeGe and SbSb homopolar bonds increase with the increase of Ge concentration, but those of the GeSe4/2 tetrahedral and SbSe3/2 pyramidal structures decrease in the Se-poor glasses. Moreover, the SeSe homopolar bonds exist in all the glasses, and they cannot be completely suppressed. When the composition is close to stochiometric value, the glass is dominated by heteropolar GeSe and SbSe bonds, but has negligible quantities of GeGe, SbSb and SeSe homopolar bonds. The transition threshold, rather than the transition predicted by the topological constraint model, occurs at the chemically stoichiometric glasses. This suggests that chemical order, rather than topological order, is a main factor in determining structures and physical properties of GeSbSe glasses.
      Corresponding author: Wang Li, lwang.1@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474014) and the Science and Technology Project of Beijing Municipal Education Commission, China (Grant No. Kz2011100050010).
    [1]

    Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141

    [2]

    Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804

    [3]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120

    [4]

    Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635

    [5]

    Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [6]

    Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792

    [7]

    Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947

    [8]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153

    [9]

    Tanaka K 1989 Phys. Rev. B 39 1270

    [10]

    Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520

    [11]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575

    [14]

    Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713

    [15]

    Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 物理学报 63 136502]

    [16]

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801]

    [17]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518

    [18]

    Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221

    [19]

    Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601

    [20]

    Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315

    [21]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [22]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85

    [23]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [24]

    Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663

    [25]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [26]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702

    [27]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205

    [28]

    Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537

    [29]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517

    [30]

    Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162

    [31]

    Li J, Drabold D A 2000 Phys. Rev. B 61 11998

  • [1]

    Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141

    [2]

    Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804

    [3]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120

    [4]

    Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635

    [5]

    Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [6]

    Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792

    [7]

    Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947

    [8]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153

    [9]

    Tanaka K 1989 Phys. Rev. B 39 1270

    [10]

    Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520

    [11]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575

    [14]

    Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713

    [15]

    Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 物理学报 63 136502]

    [16]

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801]

    [17]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518

    [18]

    Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221

    [19]

    Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601

    [20]

    Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315

    [21]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [22]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85

    [23]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [24]

    Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663

    [25]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [26]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702

    [27]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205

    [28]

    Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537

    [29]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517

    [30]

    Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162

    [31]

    Li J, Drabold D A 2000 Phys. Rev. B 61 11998

  • [1] Zhu Meng-Long, Yang Jun, Dong Yu-Lan, Zhou Yuan, Shao Yan, Hou Hai-Liang, Chen Zhi-Hui, He Jun. Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111). Acta Physica Sinica, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [2] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [4] Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang. Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass. Acta Physica Sinica, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [5] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [6] Yang Meng-Sheng, Yi Tai-Min, Zheng Feng-Cheng, Tang Yong-Jian, Zhang Lin, Du Kai, Li Ning, Zhao Li-Ping, Ke Bo, Xing Pi-Feng. Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Physica Sinica, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [7] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [8] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [9] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [10] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [11] Qiao Bei-Jing, Chen Fei-Fei, Huang Yi-Cong, Dai Shi-Xun, Nie Qiu-Hua, Xu Tie-Feng. Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses. Acta Physica Sinica, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [12] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [13] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [14] Lin Chang-Gui, Li Zhuo-Bin, Qian Hai-Jiao, Ni Wen-Hao, Li Yan-Ying, Dai Shi-Xun. Compositional dependence of crystallization behavior in GeS2-Ga2S3-CsI chalcogenide glass. Acta Physica Sinica, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [15] Xiao Xia-Jie, Han Xiao-Qin, Liu Yu-Fang. Structure and potential energy functionof XF2(X=B,N) molecular ground state. Acta Physica Sinica, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [16] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [17] Li Han, Tang Xin-Feng, Zhao Wen-Yu, Zhang Qing-Jie. The structure and X-ray photoelectron spectroscopy analysis of double-atom filled skutterudite compounds. Acta Physica Sinica, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [18] Xu Jin-Bao, Zheng Yu-Feng, Li Jin, Sun Yan-Fei, Wu Rong. The structural optical and electrical properties of films prepared by screen print. Acta Physica Sinica, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [19] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] LI LIU-HE, ZHANG HAI-QUAN, CUI XU-MING, ZHANG YAN-HUA, XIA LI-FANG, MA XIN-XIN, SUN YUE. COMPARATIVE ANALYSIS OF DLC FLIM FINE STRUCTURE BY RAMAN SPECTRA AND X-RAY PHOTOELECTRON SPECTROSCOPY. Acta Physica Sinica, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
Metrics
  • Abstract views:  5812
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2015
  • Accepted Date:  17 August 2015
  • Published Online:  05 November 2015

/

返回文章
返回