Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precise controll of hollow beam size

Zhu Qing-Zhi Wu Feng-Tie Hu Run Feng Cong

Citation:

Precise controll of hollow beam size

Zhu Qing-Zhi, Wu Feng-Tie, Hu Run, Feng Cong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel technique to generate precisely size-controlled hollow beams by controlling the diameter of circular slit is proposed. Firstly, a laser beam is transformed into a quasi-monochromatic incoherent annular source by a rotating ground-glass disk and circular slit. Then, after passing through a thin converging lens, a J0-correlated Schell-model beam is synthesized by placing the annular incoherent source in the first focal plane of the thin lens. Finally, a partially coherent hollow beam is generated by focusing the J0-correlated Schell-model beam with an axicon. Based on the diffraction theory and the propagation law of partially coherent beams, the cross-spectral density function is derived to calculate the intensity distribution of the cross section and the radial intensity distribution along the propagation axis behind the axicon. By carrying out the theoretical calculation, the proposed optical system generates a partially hollow beam, and the size of the hollow beam expands continuously as the propagation distance increases. Before further investigating the effect of the diameter of incoherent annular source on the hollow beam behind the axicon, we also calculate the intensity distribution of the cross section and the size of hollow beams along the propagation axis at z=70 mm with the source diameters being 1, 2, 3, 4 and 5 mm, respectively. Results show that the size of the hollow beam also increases with the diameter of incoherent annular source increasing. In this case, the size of the hollow beam can be precisely controlled by tuning the diameter of incoherent annular source through circular slit. We also design and conduct an experimental generation of the hollow beam and investigate the propagation properties. In the experiment, we control the diameter of the annular source by tuning the diameter of the circular slit located before the rotating ground-glass disk. And the diameter of the annular source is equal to that of the circular slits. When the sizes of circular slits are 1, 2, 3, 4 and 5 mm, respectively, the corresponding hollow beams are measured by CCD. Experimental results show that the size of hollow beam can be controlled by the propagation distance and the diameter of the circular slit. The intensity profiles are in good agreement with theoretical predictions. Therefore, the size of hollow beams can be precisely generated and controlled by the proposed system so that the optical system can be flexibly employed in optical trapping and manipulation of particles with different sizes. The results may provide a powerful tool for manipulating the micro- and nano-particles.
      Corresponding author: Wu Feng-Tie, fengtie@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178015), the Technology Key Project of Fujian Province, China (Grant No. 2016H6016), and the Technology Key Project of Quanzhou City, China (Grant No. 2014Z127).
    [1]

    Pesce G, Volpe G, Marag O M, Jones P H, Gigan S, Sasso A, Volpe G 2015 J. Opt. Soc. Am. B 32 B84

    [2]

    Redding B, Pan Y L 2015 Opt. Lett. 40 2798

    [3]

    Marag O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807

    [4]

    Lee K, Danilina A V, Kinnunen M, Priezzhev A V, Meglinski I 2016 IEEE J. Sel. Top. Quantum Electron. 22 7000106

    [5]

    Liu P, L B 2007 Opt. Commun. 272 1

    [6]

    Xu P, He X, Wang J, Zhan M 2010 Opt. Lett. 35 2164

    [7]

    Eckerskorn N, Li L, Kirian R A, Kpper J, DePonte D P, Krolikowski W, Lee W M, Chapman H N, Rode A V 2013 Opt. Express 21 30492

    [8]

    Porfirev A P, Skidanov R V 2015 Opt. Express 23 8373

    [9]

    Turpin A, Polo J, Loiko Y V, Kber J, Schmaltz F, Kalkandjiev T K, Ahufinger V, Birkl G, Mompart J 2015 Opt. Express 23 1638

    [10]

    Shi J Z, Xu T, Zhou Q Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 234209 (in Chinese) [施建珍, 许田, 周巧巧, 纪宪明, 印建平 2015 物理学报 64 234209]

    [11]

    Gao W, Hu X, Sun D, Li J 2012 Opt. Express 20 20715

    [12]

    Li P, Zhu Q Z, Wu F T 2015 Acta Opt. Sin. 35 0422004 (in Chinese) [李攀, 朱清智, 吴逢铁 2015 光学学报 35 0422004]

    [13]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. China: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀,陈姿言2014 中国科学: 物理学力学天文学44 705]

    [14]

    He X, Wu F T, Chen Z, Pu J, Chavez-Cerda S 2016 J. Opt. 18 055605

    [15]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [16]

    Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 物理学报 62 134103]

    [17]

    Zhu Q Z, Shen D H, Wu F T, He X 2016 Acta Phys. Sin. 65 044103 (in Chinese) [朱清智, 沈栋辉, 吴逢铁, 何西 2016 物理学报 65 044103]

    [18]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [19]

    Borghi R 1999 IEEE J. Quantum Electron. 35 849

    [20]

    Wang X, Yao M, Qiu Z, Yi X, Liu Z 2015 Opt. Express 23 12508

    [21]

    Avramov-zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016 Opt. Commun. 359 207

    [22]

    Rao L, Zheng X, Wang Z, Yei P 2008 Opt. Commun. 281 1358

    [23]

    Li J, Gao X, Chen Y 2012 Opt. Commun. 285 3403

    [24]

    Turunen J, Vasara A, Friberg A T 1991 J. Opt. Soc. Am. A 8 282

    [25]

    Born M, Wolf E (translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp474-486 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第474-486页]

  • [1]

    Pesce G, Volpe G, Marag O M, Jones P H, Gigan S, Sasso A, Volpe G 2015 J. Opt. Soc. Am. B 32 B84

    [2]

    Redding B, Pan Y L 2015 Opt. Lett. 40 2798

    [3]

    Marag O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807

    [4]

    Lee K, Danilina A V, Kinnunen M, Priezzhev A V, Meglinski I 2016 IEEE J. Sel. Top. Quantum Electron. 22 7000106

    [5]

    Liu P, L B 2007 Opt. Commun. 272 1

    [6]

    Xu P, He X, Wang J, Zhan M 2010 Opt. Lett. 35 2164

    [7]

    Eckerskorn N, Li L, Kirian R A, Kpper J, DePonte D P, Krolikowski W, Lee W M, Chapman H N, Rode A V 2013 Opt. Express 21 30492

    [8]

    Porfirev A P, Skidanov R V 2015 Opt. Express 23 8373

    [9]

    Turpin A, Polo J, Loiko Y V, Kber J, Schmaltz F, Kalkandjiev T K, Ahufinger V, Birkl G, Mompart J 2015 Opt. Express 23 1638

    [10]

    Shi J Z, Xu T, Zhou Q Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 234209 (in Chinese) [施建珍, 许田, 周巧巧, 纪宪明, 印建平 2015 物理学报 64 234209]

    [11]

    Gao W, Hu X, Sun D, Li J 2012 Opt. Express 20 20715

    [12]

    Li P, Zhu Q Z, Wu F T 2015 Acta Opt. Sin. 35 0422004 (in Chinese) [李攀, 朱清智, 吴逢铁 2015 光学学报 35 0422004]

    [13]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. China: Phys. Mech. Astron. 44 705 (in Chinese) [何西, 吴逢铁, 李攀,陈姿言2014 中国科学: 物理学力学天文学44 705]

    [14]

    He X, Wu F T, Chen Z, Pu J, Chavez-Cerda S 2016 J. Opt. 18 055605

    [15]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221

    [16]

    Du T J, Wang T, Wu F T 2013 Acta Phys. Sin. 62 134103 (in Chinese) [杜团结, 王涛, 吴逢铁 2013 物理学报 62 134103]

    [17]

    Zhu Q Z, Shen D H, Wu F T, He X 2016 Acta Phys. Sin. 65 044103 (in Chinese) [朱清智, 沈栋辉, 吴逢铁, 何西 2016 物理学报 65 044103]

    [18]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [19]

    Borghi R 1999 IEEE J. Quantum Electron. 35 849

    [20]

    Wang X, Yao M, Qiu Z, Yi X, Liu Z 2015 Opt. Express 23 12508

    [21]

    Avramov-zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016 Opt. Commun. 359 207

    [22]

    Rao L, Zheng X, Wang Z, Yei P 2008 Opt. Commun. 281 1358

    [23]

    Li J, Gao X, Chen Y 2012 Opt. Commun. 285 3403

    [24]

    Turunen J, Vasara A, Friberg A T 1991 J. Opt. Soc. Am. A 8 282

    [25]

    Born M, Wolf E (translated by Yang J S) 2009 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp474-486 (in Chinese) [玻恩, 沃尔夫 著 (杨葭孙 译) 2009 光学原理 (北京: 电子工业出版社) 第474-486页]

  • [1] Zhang Xia-Ping. Interaction between spatiotemporal collinear self-decelerating Airy elegant-Laguerre-Gaussian wave packets in free space. Acta Physica Sinica, 2020, 69(2): 024204. doi: 10.7498/aps.69.20191272
    [2] Ning Xiao-Long, Wang Zhi-Zhang, Pei Chun-Ying, Yin Ya-Ling. Trapping and guiding of large-size particles in hollow beams produced by nonlinear crystals. Acta Physica Sinica, 2018, 67(1): 018701. doi: 10.7498/aps.67.20171571
    [3] Zhu Qing-Zhi, Shen Dong-Hui, Wu Feng-Tie, He Xi. Effects of a partially coherent beam on periodic bottle beam. Acta Physica Sinica, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [4] Xie Xiao-Xia, Wang Shuo-Chen, Wu Feng-Tie. Diffraction optical field of the Bessel beam through elliptical annular aperture. Acta Physica Sinica, 2015, 64(12): 124201. doi: 10.7498/aps.64.124201
    [5] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [6] Li Dong, Wu Feng-Tie, Xie Xiao-Xia. A novel method of generating qausi-non-diffracting Mahtieu beam based on axicon. Acta Physica Sinica, 2014, 63(15): 152401. doi: 10.7498/aps.63.152401
    [7] Fan Dan-Dan, Wu Feng-Tie, Cheng Zhi-Ming, Zhu Jian-Qiang. Reconstruction of incoherent source Bessel beam. Acta Physica Sinica, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [8] Du Tuan-Jie, Wang Tao, Wu Feng-Tie. Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam. Acta Physica Sinica, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [9] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao. Eliminating the center spot of bottle beam generated by axicon-lens system. Acta Physica Sinica, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [10] Cheng Zhi-Ming, Wu Feng-Tie, Fang Xiang, Fan Dan-Dan, Zhu Jian-Qiang. Multi-bottle beam generated by vaulted axicon. Acta Physica Sinica, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [11] Zheng Wei-Tao, Wu Feng-Tie, Zhang Qian-An, Cheng Zhi-Ming. A new technique for generating non-diffracting beam with long propagation distance using two axicons. Acta Physica Sinica, 2012, 61(14): 144201. doi: 10.7498/aps.61.144201
    [12] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao, Ma Liang. Bottle beam generated by novel axicon. Acta Physica Sinica, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [13] Ma Bao-Tian, Wu Feng-Tie, Ma Liang. Nanosecond non-diffracting Bessel green beam generated directly from an unstable resonator by active method. Acta Physica Sinica, 2010, 59(9): 6213-6218. doi: 10.7498/aps.59.6213
    [14] Lu Wen-He, Wu Feng-Tie, Ma Bao-Tian. A bottle beam generated by a ring obstacle-axicon. Acta Physica Sinica, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [15] Ma Liang, Wu Feng-Tie. A bottle beam generated by a step refractive index axicon. Acta Physica Sinica, 2010, 59(9): 6096-6100. doi: 10.7498/aps.59.6096
    [16] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Single bottle beam generated by a gradient axicon. Acta Physica Sinica, 2009, 58(4): 2410-2414. doi: 10.7498/aps.58.2410
    [17] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [18] Jiang Xin-Guang, Wu Feng-Tie. Influence of astigmatism on the diffraction property of the axicon and its correction. Acta Physica Sinica, 2008, 57(7): 4202-4207. doi: 10.7498/aps.57.4202
    [19] Zeng Xia-Hui, Wu Feng-Tie, Liu Lan. The description of bottle beam based on the interferential theory. Acta Physica Sinica, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [20] Zhang Lei, Cai Yang-Jian, Lu Xuan-Hui. Theoretical and experimental study of new dark hollow beams. Acta Physica Sinica, 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
Metrics
  • Abstract views:  4511
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2016
  • Accepted Date:  20 September 2016
  • Published Online:  05 September 2016

/

返回文章
返回