Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source

Cui Sui-Han Wu Zhong-Zhen Xiao Shu Liu Liang-Liang Zheng Bo-Cong Lin Hai Ricky K Y Fu Tian Xiu-Bo Paul K Tan Wen-Chang Pan Feng

Citation:

Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source

Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High-power impulse magnetron sputtering (HiPIMS), a new physical vapor deposition technique which combines the advantages of the high ionization rates of the sputtered materials and control of electromagnetism, has been widely used to deposit high-performance coatings with a large density and high adhesion. However, HiPIMS has some intrinsic disadvantages such as the low deposition rate, unstable discharge, and different ionization rates for different materials thereby hampering wider industrial adoption. We have recently designed an optimized cylindrical source based on the hollow cathode effect to circumvent the aforementioned limitations. However, during the operation of the cylindrical source, the discharge is inhomogeneous and the etching stripes are nonuniform. In order to determine the underlying mechanism and optimize the electromagnetic control, the discharge in the HiPIMS cylindrical source is simulated. The tangential magnetic field distribution on the target surface of the cylindrical sputtering source is inhomogeneous and electron runaway is serious, resulting in a relatively low plasma density. Two solutions are proposed to improve the situations. The first one is electrical improvement by installing an electron blocking plate, and the second one is magnetic improvement by adding compensating magnets. Our simulation results of the first method show that a potential well is produced by the electron blocking plate to suppress electron runaway and the plasma density is improved significantly, especially around the central cross-section of the cylindrical sputtering source. The discharge becomes homogeneous, and the etching stripes are uniform albeit not full enough. The second method of magnetic improvement significantly improves the homogeneity of the tangential magnetic field distribution on the target surface and the target utilization rate. After adding the optimized compensating magnets, the shape of the effective area (the value of the tangential magnetic field in a range of 25-50 mT) on the target surface can be controlled and made zonal. The target utilization rate increases to over 80% from 60%. In order to obtain the optimal conditions, the two techniques are combined. A larger and more homogeneous etching ring is observed by adopting both the electrical and magnetic improvements as predicted and explained by the simulation results. It can be concluded that the combination of the two improvement techniques can improve and optimize the HiPIMS cylindrical source.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the National Materials Genome Project, China (Grant No. 2016YFB0700600), the Natural Science Foundation of China (Grant No. 51301004), the Shenzhen Science and Technology Research Grant, China (Grant Nos. JCYJ20140903102215536, JCYJ20150828093127698), and the City University of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667122).
    [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201]

    [3]

    Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207]

    [4]

    Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267

    [5]

    Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [8]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [9]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [10]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21

    [11]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [12]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [13]

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528]

    [14]

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202]

    [15]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]

    [16]

    Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [17]

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]

    [18]

    Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]

    [19]

    Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]

    [20]

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 物理学报 63 175201]

    [3]

    Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 63 185207]

    [4]

    Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267

    [5]

    Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [8]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [9]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [10]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21

    [11]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [12]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [13]

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528]

    [14]

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202]

    [15]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]

    [16]

    Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [17]

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]

    [18]

    Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]

    [19]

    Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]

    [20]

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1] Gao Jian-Ying, Li Yu-Ge, Lei Ming-Kai. Plasma characteristics in deep oscillation magnetron sputtering of chromium target. Acta Physica Sinica, 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] Zhu Yan-Rong, Chang Zheng-Shi. Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube. Acta Physica Sinica, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [3] Effects of Pulse Voltage Rising Edge on the Discharge Evolution of He APPJ in Dielectric Tube. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210470
    [4] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [5] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [6] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [7] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [9] Chen Ming, Zhou Xi-Ying, Mao Xiu-Juan, Shao Jia-Jia, Yang Guo-Liang. Influence of external magnetic field on properties of aluminum-doped zinc oxide films prepared by RF magnetron sputtering. Acta Physica Sinica, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [10] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [11] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [12] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [13] Che Xue-Ke, Nie Wan-Sheng, Zhou Peng-Hui, He Hao-Bo, Tian Xi-Hui, Zhou Si-Yin. Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma. Acta Physica Sinica, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [14] Jiang Qiang, Mao Xiu-Juan, Zhou Xi-Ying, Chang Wen-Long, Shao Jia-Jia, Chen Ming. Influence of applied magnetic field on properties of silicon nitride thin film with light trapping structure prepared by R.F. magnetron sputtering. Acta Physica Sinica, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [15] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [16] Wang Gan-Ping, Xiang Fei, Tan Jie, Cao Shao-Yun, Luo Min, Kang Qiang, Chang An-Bi. Investigation in discharge progress of a long pulse high power microwave-driven source. Acta Physica Sinica, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] Mu Zong-Xin, Mu Xiao-Dong, Wang Chun, Jia Li, Dong Chuang. Analysis on the ionization of high power pulsed unbalanced magnetron sputtering powered by direct current. Acta Physica Sinica, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [18] Han Liang, Zhao Yu-Qing, Zhang Hai-Bo. The research on half-analytical method in calculating the magnetic field of unbalanced magnetron sputtering. Acta Physica Sinica, 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [19] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [20] Liu Lan-Qin, Peng Han-Sheng, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Wang Xiao-Dong, Zhou Kai-Nan, Zeng Xiao-Ming, Wang Xiao, Guo Yi, Yuan Xiao-Dong, Peng Zhi-Tao, Tang Xiao-Dong. Compensation of gain narrowing by using AOPDF in high-power ultra-short pulse laser systems. Acta Physica Sinica, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
Metrics
  • Abstract views:  11942
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2016
  • Accepted Date:  06 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回