Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock

Li Yan-Fei Li Yu-Tong Zhu Bao-Jun Yuan Da-Wei Li Fang Zhang Zhe Zhong Jia-Yong Wei Hui-Gang Pei Xiao-Xing Liu Chang Yuan Xiao-Xia Zhao Jia-Rui Han Bo Liao Guo-Qian Lu Xin Hua Neng Zhu Bao-Qiang Zhu Jian-Qiang Fang Zhi-Heng An Hong-Hai Huang Xiu-Guang Zhao Gang Zhang Jie

Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock

Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie
PDF
Get Citation
  • Laboratory astrophysics is a rapid developing field studying astrophysical or astronomical processes on a high-power pulsed facility in laboratory. It has been proved that with the similarity criteria, the parameters in astrophysical processes can be transformed into those under laboratory conditions. With appropriate experimental designs the astrophysical processes can be simulated in laboratory in a detailed and controlled way. Magnetic fields play an important role in many astrophysical processes. Recently, the generation of strong magnetic fields and their effects on relevant astrophysics have attracted much interest. According to our previous work, a strong magnetic field can be induced by a huge current formed by the background cold electron flow around the laser spot when high power laser pulses irradiate a metal wire. In this paper we use this scheme to produce a strong magnetic field and observe its effect on a bow shock on the Shenguang II (SG II) laser facility. The strength of the magnetic field is measured by B-dot detectors. With the measured results, the magnetic field distribution is calculated by using a three-dimension code. Another bunch of lasers irradiates a CH planar target to generate a high-speed plasma. A bow shock is formed in the interaction of the high-speed plasma with the metal wire under the strong magnetic condition. The effects of the strong magnetic field on the bow shock are observed by shadowgraphy and interferometry. It is shown that the Mach number of the plasma flow is reduced by the magnetic field, leading to an increase of opening angle of the bow shock and a decrease of the density ratio between downstream and upstream. In addition, according to the similarity criteria, the experimental parameters of plasma are scaled to those in space. The transformed results show that the magnetized plasma around the wire, produced by X-ray emitted from the laser-irradiated planar target in the experiment, is suitable for simulating solar wind in astrophysics. In this paper, we provide another method to produce strong magnetic field, apply it to a bow shock laboratory astrophysical study, and also generate the magnetized plasma which can be used to simulate solar wind in the future experiments.
      Corresponding author: Li Yu-Tong, ytli@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01501), the National Natural Science Foundation of China (Grant Nos. 11135012, 11375262, 11520101003, 11503041), and the Science Challenge Project (Grants No. TZ2016005).
    [1]

    Zank G P 1999 Space Sci. Rev. 89 413

    [2]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [3]

    Russell C T, Luhmann J G, Strangeway R J 2006 Planet. Space Sci. 54 1482

    [4]

    Zhang T L, Lu Q M, Baumjohann W, Russell C T, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U, Balikhin M 2012 Science 336 567

    [5]

    Mitchell C B 1998 Astrophys. J. 493 291

    [6]

    Rigby B J, Mainstone J S 1973 Planet. Space Sci. 21 499

    [7]

    Pudritz R E, Hardcastle M J, Gabuzda D C 2012 Space Sci. Rev. 169 27

    [8]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Ppin H, Portugall O 2013 Phys. Rev. Lett. 110 025002

    [9]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [10]

    Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M, Zhang J 2012 Phys. Rev. Lett. 108 215001

    [11]

    Ryutov D D, Remington B A, Robey H F, Drake R P 2001 Phys. Plasmas 8 1804

    [12]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Chen L M, Lu X, Ma J L, Wang W M, Sheng Z M, Takabe H, Rhee Y J, Ding Y K, Jiang S E, Liu S Y, Zhu J Q, Zhang J 2011 New J. Phys. 13 093001

    [13]

    Yuan D W, Wu J F, Li Y, Lu X, Zhong J, Yin C, Su L, Liao G, Wei H, Zhang K, Han B, Wang L, Jiang S, Du K, Ding Y, Zhu J, He X, Zhao G, Zhang J 2015 Astrophys. J. 815 46

    [14]

    Dong Q L, Wang S J, Li Y T, Zhang Y, Zhao J, Wei H G, Shi J R, Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [15]

    Yuan D W, Li Y T, Liu X, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Takabe H, Rhee Y J, Zhu J Q, Zhao G, Zhang J 2013 High Energ. Dens. Phys. 9 239

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325

    [17]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170

    [18]

    Gao L, Ji H T, Fiksel G, Fox W, Evans M, Alfonso N 2016 Phys. Plasmas 23 043106

    [19]

    Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L, Zhao G 2016 Phys. Plasmas 23 032125

    [20]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Phys. Plasmas 22 042703

    [21]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Seguin F H, Town R P, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [22]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energ. Dens. Phys. 17, PartA 32

    [23]

    Nilson P, Willingale L, Kaluza M, Kamperidis C, Minardi S, Wei M, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R, Tatarakis M, Najmudin Z, Rozmus W, Evans R, Haines M, Dangor A, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [24]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Landen O L, Knauer J P, Smalyuk V A 2007 Phys. Rev. Lett. 99 055001

    [25]

    Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G, Zhang J 2016 Astrophys. J. Suppl. Ser. 225 30

    [26]

    Zhu B J, Li Y T, Yuan D W, Li Y F, Li F, Liao G Q, Zhao J R, Zhong J Y, Xue F B, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Wei H G, Zhang K, Han B, Pei X X, Liu C, Zhang Z, Wang W M, Zhu J Q, Gu Y Q, Zhao Z Q, Zhang B H, Zhao G, Zhang J 2015 Appl. Phys. Lett. 107 261903

    [27]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp 359-411 (in Chinese) [朗道 L D, 栗弗席兹 E M 著 (李植 译) 2013 流体动力学(第五版) (北京: 高等教育出版社)第359411页]

    [28]

    Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N, Takabe H 2011 Phys. Rev. Lett. 106 175002

  • [1]

    Zank G P 1999 Space Sci. Rev. 89 413

    [2]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [3]

    Russell C T, Luhmann J G, Strangeway R J 2006 Planet. Space Sci. 54 1482

    [4]

    Zhang T L, Lu Q M, Baumjohann W, Russell C T, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U, Balikhin M 2012 Science 336 567

    [5]

    Mitchell C B 1998 Astrophys. J. 493 291

    [6]

    Rigby B J, Mainstone J S 1973 Planet. Space Sci. 21 499

    [7]

    Pudritz R E, Hardcastle M J, Gabuzda D C 2012 Space Sci. Rev. 169 27

    [8]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Ppin H, Portugall O 2013 Phys. Rev. Lett. 110 025002

    [9]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [10]

    Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M, Zhang J 2012 Phys. Rev. Lett. 108 215001

    [11]

    Ryutov D D, Remington B A, Robey H F, Drake R P 2001 Phys. Plasmas 8 1804

    [12]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Chen L M, Lu X, Ma J L, Wang W M, Sheng Z M, Takabe H, Rhee Y J, Ding Y K, Jiang S E, Liu S Y, Zhu J Q, Zhang J 2011 New J. Phys. 13 093001

    [13]

    Yuan D W, Wu J F, Li Y, Lu X, Zhong J, Yin C, Su L, Liao G, Wei H, Zhang K, Han B, Wang L, Jiang S, Du K, Ding Y, Zhu J, He X, Zhao G, Zhang J 2015 Astrophys. J. 815 46

    [14]

    Dong Q L, Wang S J, Li Y T, Zhang Y, Zhao J, Wei H G, Shi J R, Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [15]

    Yuan D W, Li Y T, Liu X, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Takabe H, Rhee Y J, Zhu J Q, Zhao G, Zhang J 2013 High Energ. Dens. Phys. 9 239

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325

    [17]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170

    [18]

    Gao L, Ji H T, Fiksel G, Fox W, Evans M, Alfonso N 2016 Phys. Plasmas 23 043106

    [19]

    Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L, Zhao G 2016 Phys. Plasmas 23 032125

    [20]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Phys. Plasmas 22 042703

    [21]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Seguin F H, Town R P, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [22]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energ. Dens. Phys. 17, PartA 32

    [23]

    Nilson P, Willingale L, Kaluza M, Kamperidis C, Minardi S, Wei M, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R, Tatarakis M, Najmudin Z, Rozmus W, Evans R, Haines M, Dangor A, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [24]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Landen O L, Knauer J P, Smalyuk V A 2007 Phys. Rev. Lett. 99 055001

    [25]

    Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G, Zhang J 2016 Astrophys. J. Suppl. Ser. 225 30

    [26]

    Zhu B J, Li Y T, Yuan D W, Li Y F, Li F, Liao G Q, Zhao J R, Zhong J Y, Xue F B, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Wei H G, Zhang K, Han B, Pei X X, Liu C, Zhang Z, Wang W M, Zhu J Q, Gu Y Q, Zhao Z Q, Zhang B H, Zhao G, Zhang J 2015 Appl. Phys. Lett. 107 261903

    [27]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp 359-411 (in Chinese) [朗道 L D, 栗弗席兹 E M 著 (李植 译) 2013 流体动力学(第五版) (北京: 高等教育出版社)第359411页]

    [28]

    Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N, Takabe H 2011 Phys. Rev. Lett. 106 175002

  • [1] He Min-Qing, Dong Quan-Li, Weng Su-Ming, Chen Min, Wu Hui-Chun, Sheng Zheng-Ming, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [2] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [3] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [4] ZENG GUI-HUA, ZHU HONG-WEN, XU ZHI-ZHAN. RELATIVISTIC EVEN-ORDER HARMONICS GENERATED IN UNDERDENSE PLASMA. Acta Physica Sinica, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [5] Chen Ru-Shan, Yang Yang, Yuan Hong, Yang Hong-Wei. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [6] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [7] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [8] Mo Jin-Jun, Yuan Nai-Chang, Liu Shao-Bin. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [9] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] Yuan Nai-Chang, Gu Chang-Qing, Zhou Jian-Jiang, Liu Shao-Bin. FDTD simulation for magnetized plasma photonic crystals. Acta Physica Sinica, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
  • Citation:
Metrics
  • Abstract views:  542
  • PDF Downloads:  416
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2016
  • Accepted Date:  23 January 2017
  • Published Online:  05 May 2017

Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock

    Corresponding author: Li Yu-Tong, ytli@iphy.ac.cn
  • 1. Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
  • 2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
  • 3. Department of Astronomy, Beijing Normal University, Beijing 100875, China;
  • 4. National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanical, Chinese Academy of Sciences, Shanghai 201800, China;
  • 5. Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China;
  • 6. Laboratory for Laser Plasmas(Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
  • 7. Collaborative Innovation Centre of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China;
  • 8. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2013CBA01501), the National Natural Science Foundation of China (Grant Nos. 11135012, 11375262, 11520101003, 11503041), and the Science Challenge Project (Grants No. TZ2016005).

Abstract: Laboratory astrophysics is a rapid developing field studying astrophysical or astronomical processes on a high-power pulsed facility in laboratory. It has been proved that with the similarity criteria, the parameters in astrophysical processes can be transformed into those under laboratory conditions. With appropriate experimental designs the astrophysical processes can be simulated in laboratory in a detailed and controlled way. Magnetic fields play an important role in many astrophysical processes. Recently, the generation of strong magnetic fields and their effects on relevant astrophysics have attracted much interest. According to our previous work, a strong magnetic field can be induced by a huge current formed by the background cold electron flow around the laser spot when high power laser pulses irradiate a metal wire. In this paper we use this scheme to produce a strong magnetic field and observe its effect on a bow shock on the Shenguang II (SG II) laser facility. The strength of the magnetic field is measured by B-dot detectors. With the measured results, the magnetic field distribution is calculated by using a three-dimension code. Another bunch of lasers irradiates a CH planar target to generate a high-speed plasma. A bow shock is formed in the interaction of the high-speed plasma with the metal wire under the strong magnetic condition. The effects of the strong magnetic field on the bow shock are observed by shadowgraphy and interferometry. It is shown that the Mach number of the plasma flow is reduced by the magnetic field, leading to an increase of opening angle of the bow shock and a decrease of the density ratio between downstream and upstream. In addition, according to the similarity criteria, the experimental parameters of plasma are scaled to those in space. The transformed results show that the magnetized plasma around the wire, produced by X-ray emitted from the laser-irradiated planar target in the experiment, is suitable for simulating solar wind in astrophysics. In this paper, we provide another method to produce strong magnetic field, apply it to a bow shock laboratory astrophysical study, and also generate the magnetized plasma which can be used to simulate solar wind in the future experiments.

Reference (28)

Catalog

    /

    返回文章
    返回