Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shearing interferometric electron beam imaging based on ptychographic iterative engine method

Li Yuan-Jie He Xiao-Liang Kong Yan Wang Shou-Yu Liu Cheng Zhu Jian-Qiang

Citation:

Shearing interferometric electron beam imaging based on ptychographic iterative engine method

Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ptychographic iterative engine (PIE) method can provide high-resolution amplitude and phase distributions in short-wavelength imaging,such as electron beam and X-ray imaging.Traditional PIE relies on the sub field of view (sub-FoV) scanning,and the coincidence between these adjacent sub-FoVs is required in order to ensure the high accuracy in sample information retrieval.However,in the applications of electron beam imaging,attachments or contaminants on the sample surface will be dragged with the probe light during the sub-FoV scanning due to the adsorption of charges,and the inevitable attachment and contaminant shifting will change the probe light,therefore generating inconsistent probe light,and reducing the imaging resolution and accuracy,since the deteriorated probe light destroys the PIE scanning demands.In order to maintain the high resolution and accuracy in the electron beam imaging,the attachment and contaminant shifting during the sub-FoV scanning should be avoided.Here,a shearing interference based PIE using Mllenstedt biprism is proposed in this paper.Mllenstedt biprism is widely used in the electron beam imaging,and by applying the voltage to the wire,the generated electrical field can control the deflection of the electron beam,working similarly to a biprism modulating the wavefront passing through it.In the proposed approach,setting the Mllenstedt biprism after the sample,and changing the voltage on the Mllenstedt biprism,the beam deflection angle proportional to the added voltage can generate a series of interferograms with different fringe densities.Because the traditional sub-FoV scanning is replaced by wide-field scanning by changing the voltage on the Mllenstedt biprism,the proposed method can maintain the stable probe light,avoiding the inevitable attachment and contaminant shifting,and both the amplitude and phase can be retrieved from these interferograms by using a modified PIE algorithm.In order to verify the proposed PIE method,besides the theoretical analysis,numerical calculations are provided.The biprism phase distribution is adopted to simulate the electron beam deflection caused by the Mllenstedt biprism.Additionally,by changing the voltage on the wire,different biprism phase distributions are generated to produce various interferograms.By the modified PIE method,accurate amplitude and phase distribution within error less than 0.2% can be obtained through using less than 50 iterations,indicating a rapid convergence rate.Moreover,the errors in the imaging system, such as phase deviation,position shifting,and rotation are also quantitatively analyzed.Numerical computation proves that the direction of the biprism can be precisely determined according to the frequency distribution of the fringe,and the accurate sample information can still be retrieved even with a deviation of 30% in phase deviation and 30 m in position shifting,proving the deviations of the direction and position of the Mllenstedt biprism,as well as the phase distribution can be corrected automatically in the iterative process.Finally,the modified PIE relying on the lensfree configuration can reach the resolution of the diffraction limit in imaging similar to those PIE approaches.The proposed technique can overcome difficulties of current PIE in using electron beam,thus promoting the development and application of PIE in electron microscopy.
      Corresponding author: Liu Cheng, cheng.liu@hotmail.co.uk
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11647144) and the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2012548).
    [1]

    Tian X, Yu W, Meng X, Sun A, Xue L, Liu C, Wang S 2016 Opt. Lett. 41 1427

    [2]

    Tsai E H R, Diaz A, Menzel A, Guizar-Sicairos M 2016 Opt. Express 24 6441

    [3]

    Yu W, Tian X, He X, Song X, Xue L, Liu C, Wang S 2016 Appl. Phys. Lett. 109 071112

    [4]

    Nomarski G 1955 J. Phys. Radium 16 9

    [5]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [6]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338

    [7]

    Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F 2008 Science 321 379

    [8]

    Abbey B, Nugent A K, Willianms G J, Clark J N, Peele A G, Pfeiffer M A, Jonge M, McNulty I 2008 Nat. Phys. 4 394

    [9]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [10]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [11]

    Miao J, Sayre D, Chapman H N J 1998 J. Opt. Soc. Am. A 15 1662

    [12]

    Gerchberg R W, Saxton W O 2007 Phy. Rev. A 75 043805

    [13]

    Fienup J R 1978 Opt. Lett. 3 27

    [14]

    Fienup J R 1982 Appl. Opt. 21 2758

    [15]

    Zhang F, Pedrini G, Osten W 2007 Phy. Rev. A 75 043805

    [16]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J M, Schluesener H, Humphry M J 2011 Ptychography:A Novel Phase Retrieval Technique, Advantages and its Application Braga, Portugal, May 3, 2011 p800109

    [17]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese)[刘诚, 潘兴臣, 朱健强 2013 物理学报 62 184204]

    [18]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A G, Williams G J, Hannaford P, van Dao L, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809

    [19]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [20]

    Faulkner H M A, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903

    [21]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [22]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [23]

    Suzuki A, Takahashi Y 2015 Opt. Express 23 16429

    [24]

    Yu W, He X L, Liu C, Zhu J Q 2015 Acta Phys. Sin. 64 244201 (in Chinese)[余伟, 何小亮, 刘诚, 朱健强 2015 物理学报 64 244201]

    [25]

    Yu W, Wang S S, Veetil S, Gao S M, Liu C, Zhu J Q 2016 Phys. Rev. B 93 241105

    [26]

    Mllenstedt G, Dker H 1956 Zeitschrift fr Physik 145 377

    [27]

    Cowley J M 1992 Ultramicroscopy 41 335

    [28]

    Tonomura A, Matsuda T, Endo J, Todokoro H, Komoda T 2004 Appl. Phys. Lett. 84 3229

    [29]

    Harada K, Tonomura A 2004 Appl. Phys. Lett. 84 3229

    [30]

    Rder F, Lubk A 2014 Ultramicroscopy 146 103

    [31]

    Chen J W 2012 J. Opt. Soc. Am. A 29 1606

    [32]

    Fu S F 1985 Acta Opt. Sin. 5 435 (in Chinese) [傅淑芬1985 光学学报5 435]

    [33]

    Fu S F 1987 Acta Opt. Sin. 7 558 (in Chinese) [傅淑芬1987 光学学报7 558]

    [34]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J.Opt. Soc. Am. A 29 1606

  • [1]

    Tian X, Yu W, Meng X, Sun A, Xue L, Liu C, Wang S 2016 Opt. Lett. 41 1427

    [2]

    Tsai E H R, Diaz A, Menzel A, Guizar-Sicairos M 2016 Opt. Express 24 6441

    [3]

    Yu W, Tian X, He X, Song X, Xue L, Liu C, Wang S 2016 Appl. Phys. Lett. 109 071112

    [4]

    Nomarski G 1955 J. Phys. Radium 16 9

    [5]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [6]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338

    [7]

    Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F 2008 Science 321 379

    [8]

    Abbey B, Nugent A K, Willianms G J, Clark J N, Peele A G, Pfeiffer M A, Jonge M, McNulty I 2008 Nat. Phys. 4 394

    [9]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [10]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [11]

    Miao J, Sayre D, Chapman H N J 1998 J. Opt. Soc. Am. A 15 1662

    [12]

    Gerchberg R W, Saxton W O 2007 Phy. Rev. A 75 043805

    [13]

    Fienup J R 1978 Opt. Lett. 3 27

    [14]

    Fienup J R 1982 Appl. Opt. 21 2758

    [15]

    Zhang F, Pedrini G, Osten W 2007 Phy. Rev. A 75 043805

    [16]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J M, Schluesener H, Humphry M J 2011 Ptychography:A Novel Phase Retrieval Technique, Advantages and its Application Braga, Portugal, May 3, 2011 p800109

    [17]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese)[刘诚, 潘兴臣, 朱健强 2013 物理学报 62 184204]

    [18]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A G, Williams G J, Hannaford P, van Dao L, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809

    [19]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [20]

    Faulkner H M A, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903

    [21]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [22]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [23]

    Suzuki A, Takahashi Y 2015 Opt. Express 23 16429

    [24]

    Yu W, He X L, Liu C, Zhu J Q 2015 Acta Phys. Sin. 64 244201 (in Chinese)[余伟, 何小亮, 刘诚, 朱健强 2015 物理学报 64 244201]

    [25]

    Yu W, Wang S S, Veetil S, Gao S M, Liu C, Zhu J Q 2016 Phys. Rev. B 93 241105

    [26]

    Mllenstedt G, Dker H 1956 Zeitschrift fr Physik 145 377

    [27]

    Cowley J M 1992 Ultramicroscopy 41 335

    [28]

    Tonomura A, Matsuda T, Endo J, Todokoro H, Komoda T 2004 Appl. Phys. Lett. 84 3229

    [29]

    Harada K, Tonomura A 2004 Appl. Phys. Lett. 84 3229

    [30]

    Rder F, Lubk A 2014 Ultramicroscopy 146 103

    [31]

    Chen J W 2012 J. Opt. Soc. Am. A 29 1606

    [32]

    Fu S F 1985 Acta Opt. Sin. 5 435 (in Chinese) [傅淑芬1985 光学学报5 435]

    [33]

    Fu S F 1987 Acta Opt. Sin. 7 558 (in Chinese) [傅淑芬1987 光学学报7 558]

    [34]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J.Opt. Soc. Am. A 29 1606

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang. Effect of detector photoelectric parameters on ptychographic iterative engine. Acta Physica Sinica, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [5] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [6] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [7] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [8] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [9] He Jiang-Tao, He Wen-Qi, Liao Mei-Hua, Lu Da-Jiang, Peng Xiang. Identity authentication based on two-beam interference and nonlinear correlation. Acta Physica Sinica, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [10] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [11] Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang. Ptychographic iterative engine with the incoherent illumination. Acta Physica Sinica, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] He Wen-Qi, Peng Xiang, Meng Xiang-Feng, Liu Xiao-Li. Multi-level authentication based on two-beam interference. Acta Physica Sinica, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [14] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [15] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [17] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [18] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  5476
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2016
  • Accepted Date:  02 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回