Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid

Ye Xi Yao Xiong-Liang Zhang A-Man Pang Fu-Zhen

The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid

Ye Xi, Yao Xiong-Liang, Zhang A-Man, Pang Fu-Zhen
PDF
Get Citation
  • Based on the compressible fluid theory, the boundary integral equation is used to solve the motion law of cavitation in vortex flow within different surface pressure models. The time-domain sound pressure characteristics induced by cavitation in vortex field are obtained by the moving surface Kirchhoff formulation. With the surface discretion and coordinate transformation, the cavitation surfaces are treated as the moving deformable boundary and the acoustic source directly. The influence of vortex field parameters on motion and radiation of cavitation is analyzed. Results show that with the consideration of compression, the amplitude of cavitation's pulsation as well as the sound pressure will be decreased. In the vortex fluid, cavitation will be extended, necked and splitted, and may generate a jet in sub-bubbles. While the pressure is reduced in the fluid field, the maximum radius and length before splitting of the cavitation will be enlarged. The number of sub-bubbles will increase when the pressure is small in the fluid field. The directive property of cavitation is weak. And the splitting of cavitation will generate a great peak value of sound pressure. With the increase in vortex flux or the decrease in the cavity number, the period of the cavitation oscillation and its radiation sound pressure are elongated, and the peak of sound pressure is retarded and reduced. The results in this paper could be used as the reference data for the research about the motion and sound radiation characteristics of cavitation in vortex fluid.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50939002), the National Basic Research Program of China (Grant No. 613157), and the Excellent Young Scientist Foundation of NSFC (Grant No. 51222904).
    [1]

    Hsiao C T, Pauley L L 1999 J. Fluids Eng. 121 198

    [2]

    Choi J K, Chahine G L 2002 International Association for Boundary Element Method Austin, TX, USA, 2002, May 28-30, 2002 p1

    [3]

    Choi J K, Chahine G L 2003 The 8th International Conference on Numerical Ship Hydrodynamics Busan, Korea, September 22-25 2003

    [4]

    Hsial C T, Pauley L L 2003 J. Fluids Eng. 125 53

    [5]

    Rebow M, Choi J, Choi J K, Chahine G L,Ceccio S L 2004 11th International Synposium on Flow Visualization Indiana, USA, August 9-12 2004 p1

    [6]

    Ni B Y, Zhang A M 2012 Appl. Math Mech. 33 701

    [7]

    Carrica M 1999 Int. J Multiphas. Flow 25 257

    [8]

    Pierce A D 1981 Acoustic: An Introduction to Its Physical Principles and Applications (New York: McGraw-Hill) p180

    [9]

    Hawkings D L 1979 Mechanics of sound generation in flows Goettingen, West Germany, August 28-31 1979 p294

    [10]

    Morgans W R 1930 Philos. Mag. 9 141

    [11]

    Farassat F 1988 J. Sound Vib. 123 451

    [12]

    Wang S P 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [王诗平 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 物理学报 57 339]

    [14]

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672]

    [15]

    Qi D M, Lu C J 2001 J. Hydrodyn 16 9 (in Chinese) [戚定满, 鲁传敬 2001 水动力学研究与进展 16 9]

    [16]

    Qi D M 1999 Ph. D. Dissertation (Shanghai:Shanghai Jiaotong University) (in Chinese) [戚定满 1999 博士学位论文 (上海: 上海交通大学)]

    [17]

    Jamaluddin A R, Turangan C K 2011 J. Fluid Mech. 677 305

    [18]

    Francescantonio Di 1997 J. Sound Vib. 202 491

    [19]

    Farassat F 1983 Vertica 7 309

    [20]

    Geers T L 1978 J. Acoust. Soc. Am. 64 1500

    [21]

    Geers T L 1971 J. Acoust. Soc. Am. 49 1505

    [22]

    Geers T L 1980 J. Acoust. Soc. Am. 173 1152

    [23]

    Liang K M 2010 Methods of Mathematical Physics (Beijing:Higher Education Press) (in Chinese) [梁昆淼 2010 数学物理方法(北京: 高等教育出版社)]

    [24]

    Wang S P, Sun S L, Zhang A M 2012 Chinese Journal of Theoretical and Applied Mechanics 44 513 (in Chinese) [王诗平, 孙士丽, 张阿漫 2012 力学学报 44 513]

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound. 2013.04.013

    [26]

    Saffman P G 1992 Vortex Dynamics (Cambridge: Cambridge University Press)

    [27]

    Best J P 1993 J. Fluid Mech. 251 79

    [28]

    Rose D 1976 Mechanices of Underwater Noise (Pergamon) p62

    [29]

    Gilmore F G 1952 Hydro Lab California Institute Technical Report 26 117

    [30]

    Du G H, Zhu Z M 2001 Acoustics Foundation (Nanjing: Nanjing University) (in Chinese) [杜功焕, 朱哲民, 2001 声学基础 (南京: 南京大学出版社)]

  • [1]

    Hsiao C T, Pauley L L 1999 J. Fluids Eng. 121 198

    [2]

    Choi J K, Chahine G L 2002 International Association for Boundary Element Method Austin, TX, USA, 2002, May 28-30, 2002 p1

    [3]

    Choi J K, Chahine G L 2003 The 8th International Conference on Numerical Ship Hydrodynamics Busan, Korea, September 22-25 2003

    [4]

    Hsial C T, Pauley L L 2003 J. Fluids Eng. 125 53

    [5]

    Rebow M, Choi J, Choi J K, Chahine G L,Ceccio S L 2004 11th International Synposium on Flow Visualization Indiana, USA, August 9-12 2004 p1

    [6]

    Ni B Y, Zhang A M 2012 Appl. Math Mech. 33 701

    [7]

    Carrica M 1999 Int. J Multiphas. Flow 25 257

    [8]

    Pierce A D 1981 Acoustic: An Introduction to Its Physical Principles and Applications (New York: McGraw-Hill) p180

    [9]

    Hawkings D L 1979 Mechanics of sound generation in flows Goettingen, West Germany, August 28-31 1979 p294

    [10]

    Morgans W R 1930 Philos. Mag. 9 141

    [11]

    Farassat F 1988 J. Sound Vib. 123 451

    [12]

    Wang S P 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [王诗平 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫, 姚熊亮 2008 物理学报 57 339]

    [14]

    Zhang A M, Yao X L, Li J 2008 Acta Phys. Sin. 57 1672 (in Chinese) [张阿漫, 姚熊亮, 李佳 2008 物理学报 57 1672]

    [15]

    Qi D M, Lu C J 2001 J. Hydrodyn 16 9 (in Chinese) [戚定满, 鲁传敬 2001 水动力学研究与进展 16 9]

    [16]

    Qi D M 1999 Ph. D. Dissertation (Shanghai:Shanghai Jiaotong University) (in Chinese) [戚定满 1999 博士学位论文 (上海: 上海交通大学)]

    [17]

    Jamaluddin A R, Turangan C K 2011 J. Fluid Mech. 677 305

    [18]

    Francescantonio Di 1997 J. Sound Vib. 202 491

    [19]

    Farassat F 1983 Vertica 7 309

    [20]

    Geers T L 1978 J. Acoust. Soc. Am. 64 1500

    [21]

    Geers T L 1971 J. Acoust. Soc. Am. 49 1505

    [22]

    Geers T L 1980 J. Acoust. Soc. Am. 173 1152

    [23]

    Liang K M 2010 Methods of Mathematical Physics (Beijing:Higher Education Press) (in Chinese) [梁昆淼 2010 数学物理方法(北京: 高等教育出版社)]

    [24]

    Wang S P, Sun S L, Zhang A M 2012 Chinese Journal of Theoretical and Applied Mechanics 44 513 (in Chinese) [王诗平, 孙士丽, 张阿漫 2012 力学学报 44 513]

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound. 2013.04.013

    [26]

    Saffman P G 1992 Vortex Dynamics (Cambridge: Cambridge University Press)

    [27]

    Best J P 1993 J. Fluid Mech. 251 79

    [28]

    Rose D 1976 Mechanices of Underwater Noise (Pergamon) p62

    [29]

    Gilmore F G 1952 Hydro Lab California Institute Technical Report 26 117

    [30]

    Du G H, Zhu Z M 2001 Acoustics Foundation (Nanjing: Nanjing University) (in Chinese) [杜功焕, 朱哲民, 2001 声学基础 (南京: 南京大学出版社)]

  • [1] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [2] Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun, Zhang Bao-Han. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [3] He Jie, Liu Xiu-Mei, Lu Jian, Ni Xiao-Wu. The effect of surface tension on bubble oscillation near a rigid boundary. Acta Physica Sinica, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [4] Wu Hai-Jun, Jiang Wei-Kang, Lu Wen-Bo. Multilevel fast multipole boundary element method for 3D acoustic problems and its applications. Acta Physica Sinica, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [5] Bi Chuan-Xing, Chen Xin-Zhao, Chen Jian. Experimental study on the holographic reconstruction and prediction of semi free field. Acta Physica Sinica, 2004, 53(12): 4268-4276. doi: 10.7498/aps.53.4268
    [6] Gan Cai-Jun, Li Lang, Ma Han-Dong, Xiong Hong-Liang. Theoretical and experimental investigation on aero-optical effect for a compressible mixing layer. Acta Physica Sinica, 2013, 62(18): 184701. doi: 10.7498/aps.62.184701
    [7] HOFF LU. DISSIPATION FUNCTION OF COMPRESSIBLE FLUIDS. Acta Physica Sinica, 1951, 17(2): 143-149. doi: 10.7498/aps.8.143
    [8] ZHAO KAI-HUA, YU HUI-DAN. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLOW SIMULATION. Acta Physica Sinica, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
    [9] Bostr?m Anders, Zhang Bi-Xing, Wang Cheng-Hao. Study of SH acoustic radiation field excited by a piezoelectric strip. Acta Physica Sinica, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [10] Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
  • Citation:
Metrics
  • Abstract views:  596
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2012
  • Accepted Date:  11 February 2013
  • Published Online:  05 June 2013

The motion and acoustic radiation characteristics for cavitation in the compressible vortex fluid

  • 1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Fund Project:  Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50939002), the National Basic Research Program of China (Grant No. 613157), and the Excellent Young Scientist Foundation of NSFC (Grant No. 51222904).

Abstract: Based on the compressible fluid theory, the boundary integral equation is used to solve the motion law of cavitation in vortex flow within different surface pressure models. The time-domain sound pressure characteristics induced by cavitation in vortex field are obtained by the moving surface Kirchhoff formulation. With the surface discretion and coordinate transformation, the cavitation surfaces are treated as the moving deformable boundary and the acoustic source directly. The influence of vortex field parameters on motion and radiation of cavitation is analyzed. Results show that with the consideration of compression, the amplitude of cavitation's pulsation as well as the sound pressure will be decreased. In the vortex fluid, cavitation will be extended, necked and splitted, and may generate a jet in sub-bubbles. While the pressure is reduced in the fluid field, the maximum radius and length before splitting of the cavitation will be enlarged. The number of sub-bubbles will increase when the pressure is small in the fluid field. The directive property of cavitation is weak. And the splitting of cavitation will generate a great peak value of sound pressure. With the increase in vortex flux or the decrease in the cavity number, the period of the cavitation oscillation and its radiation sound pressure are elongated, and the peak of sound pressure is retarded and reduced. The results in this paper could be used as the reference data for the research about the motion and sound radiation characteristics of cavitation in vortex fluid.

Reference (30)

Catalog

    /

    返回文章
    返回