Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks

Guo Hai-Chao Shi Fan Ma Zheng-Fei Zhou Zhi-Wen Zhou Yi-Ran

Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks

Guo Hai-Chao, Shi Fan, Ma Zheng-Fei, Zhou Zhi-Wen, Zhou Yi-Ran
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Grand canonical Monte Carlo simulations were employed to investigate the adsorption and separation of C2H6, CO2 and CH4 on two zeolitic imidazolate frameworks (ZIF-2 and ZIF-71). The adsorption isotherm and isosteric heat of pure gas, the separation performance of C2H6-CH4, CO2-CH4 and C2H6-CO2 binary mixtures and C2H6-CO2-CH4 ternary mixtures on two ZIFs were simulated and discussed. For single component gas adsorption at a low pressure, the adsorption amount depended on isosteric heat; at a high pressure, due to the limited pore volume, ZIFs preferably adsorbed smaller size gas molecules. For gas mixture separation, energetic effect dominated at low pressure, therefore, ZIFs selectively adsorbed gas component with strong interactions; packing effect usually played an important role at high pressures, consequently, smaller size component would be more entropically favorable. Results demonstrated that both ZIF-2 and ZIF-71 were of good separation performance for these three binary mixtures. For the ternary mixture separation, it was found that ZIF-2 cowld effectively separate C2H6 and CO2 from CH4 at 3000-4000 kPa and room temperature.
    [1]

    U.S. Energy Policy Act of 1992 (EPAct)

    [2]

    Xiao J T 1997 Chem. Eng. Oil Gas 2 94 (in Chinese) [肖锦堂 1997 石油与天然气化工 2 94]

    [3]

    Burchell T, Rogers M 2000 SAE Tech. Pa. Ser. 2000-01-2205

    [4]

    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M 2008 Science 319 939

    [5]

    Wang B, Cote A P, Furukawa H, O’Keeffe M, Yaghi O M 2008 Nature 453 207

    [6]

    Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M 2006 Proc. Nat. Acad. Sci. U.S.A. 103 10186

    [7]

    Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M 2010 Acc. Chem. Res. 43 58

    [8]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802-1 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802-1]

    [9]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126]

    [10]

    Li W L, Zhang J P, Guo H C, Gahungu G 2011 J. Phys. Chem. C 115 4935

    [11]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [12]

    Dai W, Xiao M, Li Z H, Tang Y J 2012 Acta Phys. Sin. 61 016801 (in Chinese) [戴伟, 肖明, 李志浩, 唐永建 2012 物理学报 61 016801]

    [13]

    Keskin S 2011 J. Phys. Chem. C 115 800

    [14]

    Liu B, Smit B 2010 J. Phys. Chem. C 114 8515

    [15]

    Battisti A, Taioli S, Garberoglio G 2011 Micropor. Mesopor. Mater. 143 46

    [16]

    Yang Q Y, Zhong C L 2006 J. Phys. Chem. B 110 17776

    [17]

    Jiang J W, Sandler S I 2006 Langmuir 22 5702

    [18]

    Babarao R, Tong Y H, Jiang J W 2009 J. Phys. Chem. B 113 9129

    [19]

    Martin M G, Siepmann J I 1998 J. Phys. Chem. B 102 2569

    [20]

    Potoff J J, Siepmann J I 2001 AIChE J. 47 1676

    [21]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [22]

    Atci E, Keskin S 2012 Ind. Eng. Chem. Res. 51 3091

    [23]

    Guo H C, Shi F, Ma Z F, Liu X Q 2010 J. Phys. Chem. C 114 12158

    [24]

    Liu D H, Zheng C C, Yang Q Y, Zhong C L 2009 J. Phys. Chem. C 113 5004

    [25]

    Sirjoosingh A, Alavi S, Woo T K 2010 J. Phys. Chem. C 114 2171

    [26]

    Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q 2003 Mol. Simul. 29 29

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [28]

    Dill J D, Pople J A 1975 J. Chem. Phys. 62 2921

    [29]

    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J, Pople J A 1982 J. Chem. Phys. 77 3654

    [30]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 299

    [31]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 270

    [32]

    Wadt W R, Hay P J 1982 J. Chem. Phys. 82 284

    [33]

    Breneman C M, Wiberg K B 1990 J. Comput. Chem. 11 361

    [34]

    Snurr R Q, Bell A T, Theodorou D N 1993 J. Phys. Chem. 97 13742

    [35]

    Duren T, Millange F, Ferey G, Walton K S, Snurr R Q 2007 J. Phys. Chem. C 111 15350

    [36]

    Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M 2010 J. Am. Chem. Soc. 132 11006

    [37]

    Frost H, Duren T, Snurr R Q 2006 J. Phys. Chem. B 110 9565

    [38]

    Gallo M, Glossman-Mitnik D 2009 J. Phys. Chem. C 113 6634

    [39]

    Keffer D, Davis H T, McCormick A V 1996 J. Phys. Chem. 100 638

    [40]

    He Y, Zhang Z, Xiang S, Wu H, Fronczek F R, Zhou W, Krishna R, O’Keeffe M, Chen B 2012 Chem. Eur. J. 18 1901

    [41]

    Pereira P R, Pires J, de Carvalho M B 2001 Sep. Purif. Technol. 21 237

    [42]

    Magnowski N B K, Avila A M, Lin C C H, Shi M, Kuznicki S M 2011 Chem. Eng. Sci. 66 1697

    [43]

    Martin-Calvo A, Garcia-Perez E, Castillo J M, Calero S 2008 Phys. Chem. Chem. Phys. 10 7085

    [44]

    Yang Q Y, Zhong C L 2006 Chem. Phys. Chem. 7 1417

    [45]

    Bastin L, Barcia P S, Hurtado E J, Silva J A C, Rodrigues A E, Chen B L 2008 J. Phys. Chem. C 112 1575

    [46]

    Babarao R, Jiang J W 2009 Energy Environ. Sci. 2 1088

    [47]

    Bae Y S, Farha O K, Spokoyny A M, Mirkin C A, Hupp J T, Snurr R Q 2008 Chem. Commun. 4135

    [48]

    Pires J, Bestilleiro M, Pinto M, Gil A 2008 Sep. Purif. Technol. 61 161

  • [1]

    U.S. Energy Policy Act of 1992 (EPAct)

    [2]

    Xiao J T 1997 Chem. Eng. Oil Gas 2 94 (in Chinese) [肖锦堂 1997 石油与天然气化工 2 94]

    [3]

    Burchell T, Rogers M 2000 SAE Tech. Pa. Ser. 2000-01-2205

    [4]

    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M 2008 Science 319 939

    [5]

    Wang B, Cote A P, Furukawa H, O’Keeffe M, Yaghi O M 2008 Nature 453 207

    [6]

    Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M 2006 Proc. Nat. Acad. Sci. U.S.A. 103 10186

    [7]

    Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M 2010 Acc. Chem. Res. 43 58

    [8]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802-1 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802-1]

    [9]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126]

    [10]

    Li W L, Zhang J P, Guo H C, Gahungu G 2011 J. Phys. Chem. C 115 4935

    [11]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [12]

    Dai W, Xiao M, Li Z H, Tang Y J 2012 Acta Phys. Sin. 61 016801 (in Chinese) [戴伟, 肖明, 李志浩, 唐永建 2012 物理学报 61 016801]

    [13]

    Keskin S 2011 J. Phys. Chem. C 115 800

    [14]

    Liu B, Smit B 2010 J. Phys. Chem. C 114 8515

    [15]

    Battisti A, Taioli S, Garberoglio G 2011 Micropor. Mesopor. Mater. 143 46

    [16]

    Yang Q Y, Zhong C L 2006 J. Phys. Chem. B 110 17776

    [17]

    Jiang J W, Sandler S I 2006 Langmuir 22 5702

    [18]

    Babarao R, Tong Y H, Jiang J W 2009 J. Phys. Chem. B 113 9129

    [19]

    Martin M G, Siepmann J I 1998 J. Phys. Chem. B 102 2569

    [20]

    Potoff J J, Siepmann J I 2001 AIChE J. 47 1676

    [21]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [22]

    Atci E, Keskin S 2012 Ind. Eng. Chem. Res. 51 3091

    [23]

    Guo H C, Shi F, Ma Z F, Liu X Q 2010 J. Phys. Chem. C 114 12158

    [24]

    Liu D H, Zheng C C, Yang Q Y, Zhong C L 2009 J. Phys. Chem. C 113 5004

    [25]

    Sirjoosingh A, Alavi S, Woo T K 2010 J. Phys. Chem. C 114 2171

    [26]

    Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q 2003 Mol. Simul. 29 29

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [28]

    Dill J D, Pople J A 1975 J. Chem. Phys. 62 2921

    [29]

    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J, Pople J A 1982 J. Chem. Phys. 77 3654

    [30]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 299

    [31]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 270

    [32]

    Wadt W R, Hay P J 1982 J. Chem. Phys. 82 284

    [33]

    Breneman C M, Wiberg K B 1990 J. Comput. Chem. 11 361

    [34]

    Snurr R Q, Bell A T, Theodorou D N 1993 J. Phys. Chem. 97 13742

    [35]

    Duren T, Millange F, Ferey G, Walton K S, Snurr R Q 2007 J. Phys. Chem. C 111 15350

    [36]

    Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M 2010 J. Am. Chem. Soc. 132 11006

    [37]

    Frost H, Duren T, Snurr R Q 2006 J. Phys. Chem. B 110 9565

    [38]

    Gallo M, Glossman-Mitnik D 2009 J. Phys. Chem. C 113 6634

    [39]

    Keffer D, Davis H T, McCormick A V 1996 J. Phys. Chem. 100 638

    [40]

    He Y, Zhang Z, Xiang S, Wu H, Fronczek F R, Zhou W, Krishna R, O’Keeffe M, Chen B 2012 Chem. Eur. J. 18 1901

    [41]

    Pereira P R, Pires J, de Carvalho M B 2001 Sep. Purif. Technol. 21 237

    [42]

    Magnowski N B K, Avila A M, Lin C C H, Shi M, Kuznicki S M 2011 Chem. Eng. Sci. 66 1697

    [43]

    Martin-Calvo A, Garcia-Perez E, Castillo J M, Calero S 2008 Phys. Chem. Chem. Phys. 10 7085

    [44]

    Yang Q Y, Zhong C L 2006 Chem. Phys. Chem. 7 1417

    [45]

    Bastin L, Barcia P S, Hurtado E J, Silva J A C, Rodrigues A E, Chen B L 2008 J. Phys. Chem. C 112 1575

    [46]

    Babarao R, Jiang J W 2009 Energy Environ. Sci. 2 1088

    [47]

    Bae Y S, Farha O K, Spokoyny A M, Mirkin C A, Hupp J T, Snurr R Q 2008 Chem. Commun. 4135

    [48]

    Pires J, Bestilleiro M, Pinto M, Gil A 2008 Sep. Purif. Technol. 61 161

  • [1] Ruan Cong, Sun Xiao-Min, Song Yi-Xu. Cellular method combined with Monte Carlo method to simulate the thin film growth processes. Acta Physica Sinica, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [2] Zhang Ke-Sheng, Chen Liu-Kui, Ou Wei-Hua, Jiang Xue-Qin, Long Fei. A theory for monitoring combustion of natural gas based on the maximum point in sound absorption spectrum. Acta Physica Sinica, 2015, 64(5): 054302. doi: 10.7498/aps.64.054302
    [3] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [4] Liu Hai-Jun, Tian Xiao-Bo, Li Qing-Jiang, Sun Zhao-Lin, Diao Jie-Tao. Research on radiation damage in titanium oxide memristors by Monte Carlo method. Acta Physica Sinica, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
    [5] ZHANG YI-MEN, GUO HONG-XIA, CHEN YU-SHENG, WU GUO-RONG, ZHOU HUI, GUAN YING, HAN FU-BIN, GONG JIAN-CHENG. USING MULTIPLE PARALLEL PLATE ALUMINUM IONIZATION CHAMBER FOR DETERMINING DOSE DISTRIBUTION AT AND NEAR THE INTERFACE OF DIFFERENT MATERIALS AND ITS MONTE CARLO SIMULATION. Acta Physica Sinica, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [6] Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [7] WANG DA-ZHI, WU YONG-HUA, LI HUI-XIANG, ZHANG DAO-YUAN. A STUDY ON Sn4+ CATION EXCHANGE NATURAL ZEOLITE TREATED AT DIFFERENT TEMPERATURES. Acta Physica Sinica, 1992, 41(7): 1208-1212. doi: 10.7498/aps.41.1208
    [8] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang. Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation. Acta Physica Sinica, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [9] Chen Shan-Jun, Sun Wei-Guo, Luo Jiang-Shan, Tang Yong-Jian, Wang Chao-Yang, Dai Wei. Simulation of hydrogen adsorption in molecular sieves. Acta Physica Sinica, 2009, 58(3): 1890-1895. doi: 10.7498/aps.58.1890
    [10] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [11] Zhou Xian-Chun, Lin Wan-Tao, Lin Yi-Hua, Yao Jing-Sun, Mo Jia-Qi. A method of solving a class of disturbed Lorenz system. Acta Physica Sinica, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [12] YUAN WANG-ZHI, WANG DA-ZHI, ZHOU GUI-EN, LING BI-XIA. PHASE TRANSITION OF MORDENITE AT HIGH TEMPERATURE. Acta Physica Sinica, 1987, 36(2): 254-258. doi: 10.7498/aps.36.254
    [13] Zheng Hui, Zhang Chong-Hong, Sun Bo, Yang Yi-Tao, Bai Bin, Song Yin, Lai Xin-Chun. Study on early stage of phase-separation process with low volume ratio using lattice gas model in three dimensions. Acta Physica Sinica, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [14] Mei Feng-Xiang, Li Yan-Min. Generalized canonical transformations of a kind of generalized Birkhoff systems. Acta Physica Sinica, 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219
    [15] Wang Dong-Yi, Xue Chun-Yu, Zhong Chong-Li. A molecular simulation of diffusion mechanism of n-alkanes in copper(Ⅱ) benzene-1,3,5-tricarboxylate metal-organic framework. Acta Physica Sinica, 2009, 58(8): 5552-5559. doi: 10.7498/aps.58.5552
    [16] YUAN WANG-ZHI, WANG DA-ZHI, YU WEN-HAI. THE ELECTRICAL CONDUCTIVITY OF MORDENITE. Acta Physica Sinica, 1989, 38(5): 800-806. doi: 10.7498/aps.38.800
    [17] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [18] Wang Sheng-Ye, Wang Guang-Xue, Dong Yi-Dao, Deng Xiao-Gang. High-order detached-eddy simulation method based on a Reynolds-stress background model. Acta Physica Sinica, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [19] Mo Xiong, Shi Min-Min, Chen Hong-Zheng, Wang Mang, Zhang Wen-Hua, Wang Guo-Dong, Wang Li-Wu, Xu Fa-Qiang, Pan Hai-Bin. Study of electronic structure of 3, 4, 9, 10-perylenetetracarboxylic bisimidazole/Ag interface by photoemission. Acta Physica Sinica, 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [20] Mo Jia-Qi, Lin Wan-Tao. The homotopic solving method for a class of El Ni?o sea-air oscillator mechanism. Acta Physica Sinica, 2005, 54(3): 993-995. doi: 10.7498/aps.54.993
  • Citation:
Metrics
  • Abstract views:  609
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2013
  • Accepted Date:  09 May 2013
  • Published Online:  05 September 2013

Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks

  • 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;
  • 2. URS Corporation, PO Box 618, South Park, PA, USA.;
  • 3. National Energy Technology Laboratory, U.S. D.O.E., 626 Cochrans Mill Road, Pittsburgh, PA, USA.;
  • 4. Navi Health and Environment Technology, Pittsburgh, PA, USA.

Abstract: Grand canonical Monte Carlo simulations were employed to investigate the adsorption and separation of C2H6, CO2 and CH4 on two zeolitic imidazolate frameworks (ZIF-2 and ZIF-71). The adsorption isotherm and isosteric heat of pure gas, the separation performance of C2H6-CH4, CO2-CH4 and C2H6-CO2 binary mixtures and C2H6-CO2-CH4 ternary mixtures on two ZIFs were simulated and discussed. For single component gas adsorption at a low pressure, the adsorption amount depended on isosteric heat; at a high pressure, due to the limited pore volume, ZIFs preferably adsorbed smaller size gas molecules. For gas mixture separation, energetic effect dominated at low pressure, therefore, ZIFs selectively adsorbed gas component with strong interactions; packing effect usually played an important role at high pressures, consequently, smaller size component would be more entropically favorable. Results demonstrated that both ZIF-2 and ZIF-71 were of good separation performance for these three binary mixtures. For the ternary mixture separation, it was found that ZIF-2 cowld effectively separate C2H6 and CO2 from CH4 at 3000-4000 kPa and room temperature.

Reference (48)

Catalog

    /

    返回文章
    返回