Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and electrochemical properties of Co2SnO4/graphene composites

Chen Chang Ru Qiang Hu She-Jun An Bo-Nan Song Xiong

Citation:

Preparation and electrochemical properties of Co2SnO4/graphene composites

Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Co2SnO4/graphene composite has been prepared by multi-step synthetic process. Firstly, the formation of Co2SnO4 and the reduction of graphene oxide (GO) occur simultaneously during the hydrothermal process and the Co2SnO4 particles are uniformly embedded in the film-like graphene to form a mosaic structure. To characterize the phase and morphology of the composite material, X-ray diffraction (XRD), scanning electron microscope (SEM) are used. The constant current charge and discharge (CC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are also used to test the electrochemical performance of Co2SnO4/graphene composite. Results show that graphene can effectively improve the electrochemical performance of Co2SnO4/graphene composite by its good dispersibility and high electrical conductivity. The composite material exhibits a first discharge specific capacity of 1415.2 mA·h/g with the specific capacity still higher than 469.7 mA·h/g after 50 cycles.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101062, 51171065), the Science and Technology Project of Guangzhou City, China (Grant No. 2011J4100075), the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM09052), the Natural Science Foundation of Guangdong Province, China (Grant Nos. S2012020010937, 10351063101000001), and the Graduate Student Research Innovation Fund of South China Normal University (Grant No. 2013KYJJ039).
    [1]

    Ostrovskii D, Scrosati B, Jacobsson P 1995 Nature 103 10

    [2]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [3]

    Cabana J, Monconduit L, Larcher D, Palacin MR 2010 Adv. Mater. 22 E170

    [4]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 J. Alloys Comp. 575 246

    [5]

    Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F 2013 Small 9 1237

    [6]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [7]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226(in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [8]

    Zheng M T, Liu Y L, Xiao Y, Dong H W, Feng H B, Zhang H R, Lei B F 2013 ACS Appl. Mater. Inter. 5 12561

    [9]

    Needham S A, Wang G X, Konstantinov K, Tournayre Y, Lao Z, Liu H K 2006 Electrochem. Solid. St. 9 A315

    [10]

    Dong X C, Xu H, Wang X W, Huang Y X, Mary B. Chan-Park, Zhang H, Wang L H, Huang W, Chen P 2012 ACS Nano. 6 3206

    [11]

    Cheng J L, Xin H L, Zheng H M, Wang B 2013 J. Power Sources 232 152

    [12]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [13]

    Courtney I A, Dahn J R 1997 J. Electrochem. Soc. 144 2943

    [14]

    Wang G, Gao X P, Shen P W 2009 J. Power Sources 192 719

    [15]

    Yue Q, Ning D, Hui Z, Ping W, Yang D R 2011 J. Power Sources 196 10234

    [16]

    Wang G, Liu Z Y, Liu P 2011 Electrochim. Acta. 56 9515

    [17]

    Wang R, He F, Wan Y Z, Qi Y 2012 J. Alloys Compd. 514 35

    [18]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712

    [19]

    Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G 2011 J. Alloys Compd. 509 S705

    [20]

    Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S 2011 Science 332 1537

    [21]

    Yeh T S, Wu Y S and LeeY H 2012 J. Alloys Compd. 515 90

    [22]

    Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S 2010 Adv. Mater. 22 3906

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [24]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [25]

    Geim A K 2009 Science 324 1530

    [26]

    Hernandez Y, Nicolosi V, Lotya M 2008 Nat. Nanotechnol. 3 563

    [27]

    Uhm S, Tuyen N H, Lee J 2011 Electrochem. Commun. 13 677

    [28]

    Vincent C T, Matthew J A, Yang Y, Richard B K 2009 Nature Nanotech. 329 25

    [29]

    McAllister M J, Li J L, Adamson D H, Schniepp H C 2007 Chem. Mater. 19 4396

    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]

    Wang X L, Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [32]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [33]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 112 255

    [34]

    Chen D, Feng H B, Li J H 2012 Chem. Rev. 112 6027

    [35]

    Qi Y, Du N, Zhang H, Wu P, Yang D R 2011 J. Power Sources 196 10234

    [36]

    Chang C C, Liu S J, Wu J J, Yang C H 2007 J. Phys. Chem. C 111 16423

    [37]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [38]

    Sharma Y, Sharma N, Rao G V S, Chowdari B V R 2007 J. Power Sources 173 495

    [39]

    Chen J S, Cheah Y L, Chen Y T, Jayaprakash N, Madhavi S, Yang Y H, Lou X W 2009 J. Phys. Chem. C 113 20504

    [40]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [41]

    Lavela P, Ortiz G F, Tirado J L, Zhecheva E, Stoyanova R, Ivanova S 2007 J. Phys. Chem. C 111 14238

    [42]

    Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A 2002 Chem. Mater. 14 4155

    [43]

    Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P 2007 Adv. Mater. 19 4505

    [44]

    Xue M Z, Fu Z W 2006 Electrochem. Solid-State Lett. 9 A468

    [45]

    Alcantara R, Ortiz G F, Lavela P, Tirado J L 2006 Electrochem. Commun. 8 731

    [46]

    Choi H C, Lee S Y, Kim S B, Kim M G, Lee M K, Shin H J, Lee J S 2002 J. Phys. Chem. B 106 9252

    [47]

    Liu H C, Yen S K 2007 J. Power Sources 166 478

    [48]

    Maier J 2005 Nat. Mater. 4 805

    [49]

    Huang X H, Tu J P, Zhang C Q, Xiang J Y 2007 Electrochem. Commun. 9 1180

    [50]

    Yang S B, Song H H, Chen X H 2006 Electrochem. Commun. 8 137

    [51]

    Zhang J J, Liang J W, Zhu Y C, Wei D H, Fan L, Qian Y T 2014 J. Mater. Chem. A 2 2728

  • [1]

    Ostrovskii D, Scrosati B, Jacobsson P 1995 Nature 103 10

    [2]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [3]

    Cabana J, Monconduit L, Larcher D, Palacin MR 2010 Adv. Mater. 22 E170

    [4]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 J. Alloys Comp. 575 246

    [5]

    Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F 2013 Small 9 1237

    [6]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [7]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226(in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [8]

    Zheng M T, Liu Y L, Xiao Y, Dong H W, Feng H B, Zhang H R, Lei B F 2013 ACS Appl. Mater. Inter. 5 12561

    [9]

    Needham S A, Wang G X, Konstantinov K, Tournayre Y, Lao Z, Liu H K 2006 Electrochem. Solid. St. 9 A315

    [10]

    Dong X C, Xu H, Wang X W, Huang Y X, Mary B. Chan-Park, Zhang H, Wang L H, Huang W, Chen P 2012 ACS Nano. 6 3206

    [11]

    Cheng J L, Xin H L, Zheng H M, Wang B 2013 J. Power Sources 232 152

    [12]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [13]

    Courtney I A, Dahn J R 1997 J. Electrochem. Soc. 144 2943

    [14]

    Wang G, Gao X P, Shen P W 2009 J. Power Sources 192 719

    [15]

    Yue Q, Ning D, Hui Z, Ping W, Yang D R 2011 J. Power Sources 196 10234

    [16]

    Wang G, Liu Z Y, Liu P 2011 Electrochim. Acta. 56 9515

    [17]

    Wang R, He F, Wan Y Z, Qi Y 2012 J. Alloys Compd. 514 35

    [18]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712

    [19]

    Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G 2011 J. Alloys Compd. 509 S705

    [20]

    Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S 2011 Science 332 1537

    [21]

    Yeh T S, Wu Y S and LeeY H 2012 J. Alloys Compd. 515 90

    [22]

    Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S 2010 Adv. Mater. 22 3906

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [24]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [25]

    Geim A K 2009 Science 324 1530

    [26]

    Hernandez Y, Nicolosi V, Lotya M 2008 Nat. Nanotechnol. 3 563

    [27]

    Uhm S, Tuyen N H, Lee J 2011 Electrochem. Commun. 13 677

    [28]

    Vincent C T, Matthew J A, Yang Y, Richard B K 2009 Nature Nanotech. 329 25

    [29]

    McAllister M J, Li J L, Adamson D H, Schniepp H C 2007 Chem. Mater. 19 4396

    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]

    Wang X L, Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [32]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [33]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 112 255

    [34]

    Chen D, Feng H B, Li J H 2012 Chem. Rev. 112 6027

    [35]

    Qi Y, Du N, Zhang H, Wu P, Yang D R 2011 J. Power Sources 196 10234

    [36]

    Chang C C, Liu S J, Wu J J, Yang C H 2007 J. Phys. Chem. C 111 16423

    [37]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [38]

    Sharma Y, Sharma N, Rao G V S, Chowdari B V R 2007 J. Power Sources 173 495

    [39]

    Chen J S, Cheah Y L, Chen Y T, Jayaprakash N, Madhavi S, Yang Y H, Lou X W 2009 J. Phys. Chem. C 113 20504

    [40]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [41]

    Lavela P, Ortiz G F, Tirado J L, Zhecheva E, Stoyanova R, Ivanova S 2007 J. Phys. Chem. C 111 14238

    [42]

    Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A 2002 Chem. Mater. 14 4155

    [43]

    Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P 2007 Adv. Mater. 19 4505

    [44]

    Xue M Z, Fu Z W 2006 Electrochem. Solid-State Lett. 9 A468

    [45]

    Alcantara R, Ortiz G F, Lavela P, Tirado J L 2006 Electrochem. Commun. 8 731

    [46]

    Choi H C, Lee S Y, Kim S B, Kim M G, Lee M K, Shin H J, Lee J S 2002 J. Phys. Chem. B 106 9252

    [47]

    Liu H C, Yen S K 2007 J. Power Sources 166 478

    [48]

    Maier J 2005 Nat. Mater. 4 805

    [49]

    Huang X H, Tu J P, Zhang C Q, Xiang J Y 2007 Electrochem. Commun. 9 1180

    [50]

    Yang S B, Song H H, Chen X H 2006 Electrochem. Commun. 8 137

    [51]

    Zhang J J, Liang J W, Zhu Y C, Wei D H, Fan L, Qian Y T 2014 J. Mater. Chem. A 2 2728

  • [1] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [2] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [3] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [5] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [7] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [8] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying. Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery. Acta Physica Sinica, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [10] Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun. Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery. Acta Physica Sinica, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [11] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [12] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [18] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [19] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] Li Jia, Yang Chuan-Zheng, Zhang Xi-Gui, Zhang Jian, Xia Bao-Jia. XRD studies on the electrode materials in the charge-discharge process of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 battery. Acta Physica Sinica, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
Metrics
  • Abstract views:  5131
  • PDF Downloads:  703
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2014
  • Accepted Date:  03 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回