Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model

Zeng Jian-Bang Guo Xue-Ying Liu Li-Chao Shen Zu-Ying Shan Feng-Wu Luo Yu-Feng

Citation:

Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model

Zeng Jian-Bang, Guo Xue-Ying, Liu Li-Chao, Shen Zu-Ying, Shan Feng-Wu, Luo Yu-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Separator is an important component of lithium-ion battery,and the microstructure of separator has an important influence on the performance of lithium-ion battery.In the present paper,an electrochemical-thermal full coupling model is developed to accurately describe the complex physicalchemical phenomena in lithium-ion battery in charge and discharge process.The simulation results by the present model are closer to the experimental results than those by the previously published model.What is more,the present model is widely used to investigate the effects of the separator porosity and tortuosity on the performance of lithium-ion battery,respectively.The simulation results show that with separator porosity decreasing or separator tortuosity increasing,the output voltage,maximum discharge capacity and average output power of lithium-ion battery decrease,and the lithium-ion battery surface temperature and its rising rate increase.In the initial stage of discharge,when the separator porosity decreases or separator tortuosity increases to a certain degree,the output voltage of lithium-ion battery first decreases and then increases.The smaller the separator porosity or the higher the separator tortuosity,the larger the range and rate of reducing the output voltage of lithium-ion battery become and the longer the rise time needs in the initial stage of discharge.To ensure that the output voltage of lithium-ion battery is higher than the cut-off voltage,the separator tortuosity must be less than the critical tortuosity (It is equal to the separator tortuosity of the lithium-ion battery with the lowest output voltage,which is just equal to the cut-off voltage in the initial stage of discharge).Finally,a comprehensive analysis is conducted on the dynamic distribution of the electrochemical parameters and various heat productions in lithium-ion battery during charge and discharge.It can be clearly found that the electrochemical reactions in the end of discharge,the diffusion coefficients and the conduction coefficients of Li+ of electrolyte in the initial and middle stage of discharge are mainly influenced by the separator porosity and tortuosity.The research results in the present paper not only provide theoretical and technical support for the separator microstructure design and optimization,but also has important realistic meanings for improving or perfecting the preparation technology of the separator.
    [1]

    Pan R J, Wang Z H, Sun R, Lindh J, Edstrom K, Strømme M, Nyholm L 2017 Cellulose 24 2903

    [2]

    Deimede V, Elmasides C 2015 Energy Technol. 3 453

    [3]

    Venugopal G, Moore J, Howard J, Pendalwar S 1999 J. Power Sources 77 34

    [4]

    Djian D, Alloin F, Martinet S, Lignier H, Sanchez J Y 2007 J. Power Sources 172 416

    [5]

    Costa C M, Rodrigues L C, Sencadas V, Silva M M, Rocha J G, Lanceros-Méndez S 2012 J. Membrane Sci. 407–408 193

    [6]

    Plaimer M, Breitfuß C, Sinz W, Heindl S F, Ellersdorfer C, Steffan H, Wilkening M, Hennige V, Taschl R, Geier A, Schramm C, Freunberger S A 2016 J. Power Sources 306 702

    [7]

    Lee Y J, Park J, Jeon H, Yeon D, Kim B H, Cho K Y, Ryou M H, Lee Y M 2016 J. Power Sources 325 732

    [8]

    Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R 2012 J. Electrochem. Soc. 159 R31

    [9]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [10]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [11]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [12]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [13]

    Appiah W A, Park J, Song S, Byun S, Ryou M H, Lee Y M 2016 J. Power Sources 319 147

    [14]

    De S, Northrop P W C, Ramadesigan V, Subramanian V R 2013 J. Power Sources 227 161

    [15]

    Golmon S, Maute K, Dunn M L 2012 Int. J. Numer. Meth. Eng. 92 475

    [16]

    Golmon S, Maute K, Dunn M L 2014 J. Power Sources 253 239

    [17]

    Miranda D, Costa C M, Almeida A M, Lanceros-Méndez S 2015 Solid State Ionics 278 78

    [18]

    Xue N S, Du W B, Gupta A, Shyy W, Sastry A M, Martins J R R A 2013 J. Electrochem. Soc. 160 A1071

    [19]

    Liu C H, Liu L 2017 J. Electrochem. Soc. 164 E3254

    [20]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [21]

    Ye Y H, Shi Y X, Cai N S, Lee J J, He X M 2012 J. Power Sources 199 227

    [22]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543

    [23]

    Kuzminskii Y V, Nyrkova L I, Andriiko A A 1993 J. Power Sources 46 29

    [24]

    Peng P, Jiang F M 2016 Int. J. Heat Mass Tran. 103 1008

    [25]

    Bang H, Yang H, Sun Y K, Prakash J 2005 J. Electrochem. Soc. 152 A421

    [26]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [27]

    Zeng J B, Wu W, Jiang F M 2014 Solid State Ionics 260 76

    [28]

    He S Y, Zeng J B, Bereket T H, Jiang F M 2016 Sci. Bull. 61 656

    [29]

    Tye F L 1983 J. Power Sources 9 89

    [30]

    Tjaden B, Brett D J L, Shearing P R 2018 Int. Mater. Rev. 63 47

    [31]

    Valøen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [32]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [33]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [34]

    Miao Y K, Liu H F, Liu Q H, Li S Y 2016 Sci. Rep. 6 32639

  • [1]

    Pan R J, Wang Z H, Sun R, Lindh J, Edstrom K, Strømme M, Nyholm L 2017 Cellulose 24 2903

    [2]

    Deimede V, Elmasides C 2015 Energy Technol. 3 453

    [3]

    Venugopal G, Moore J, Howard J, Pendalwar S 1999 J. Power Sources 77 34

    [4]

    Djian D, Alloin F, Martinet S, Lignier H, Sanchez J Y 2007 J. Power Sources 172 416

    [5]

    Costa C M, Rodrigues L C, Sencadas V, Silva M M, Rocha J G, Lanceros-Méndez S 2012 J. Membrane Sci. 407–408 193

    [6]

    Plaimer M, Breitfuß C, Sinz W, Heindl S F, Ellersdorfer C, Steffan H, Wilkening M, Hennige V, Taschl R, Geier A, Schramm C, Freunberger S A 2016 J. Power Sources 306 702

    [7]

    Lee Y J, Park J, Jeon H, Yeon D, Kim B H, Cho K Y, Ryou M H, Lee Y M 2016 J. Power Sources 325 732

    [8]

    Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R 2012 J. Electrochem. Soc. 159 R31

    [9]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [10]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [11]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [12]

    Srinivasan V, Newman J 2004 J. Electrochem. Soc. 151 A1530

    [13]

    Appiah W A, Park J, Song S, Byun S, Ryou M H, Lee Y M 2016 J. Power Sources 319 147

    [14]

    De S, Northrop P W C, Ramadesigan V, Subramanian V R 2013 J. Power Sources 227 161

    [15]

    Golmon S, Maute K, Dunn M L 2012 Int. J. Numer. Meth. Eng. 92 475

    [16]

    Golmon S, Maute K, Dunn M L 2014 J. Power Sources 253 239

    [17]

    Miranda D, Costa C M, Almeida A M, Lanceros-Méndez S 2015 Solid State Ionics 278 78

    [18]

    Xue N S, Du W B, Gupta A, Shyy W, Sastry A M, Martins J R R A 2013 J. Electrochem. Soc. 160 A1071

    [19]

    Liu C H, Liu L 2017 J. Electrochem. Soc. 164 E3254

    [20]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [21]

    Ye Y H, Shi Y X, Cai N S, Lee J J, He X M 2012 J. Power Sources 199 227

    [22]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543

    [23]

    Kuzminskii Y V, Nyrkova L I, Andriiko A A 1993 J. Power Sources 46 29

    [24]

    Peng P, Jiang F M 2016 Int. J. Heat Mass Tran. 103 1008

    [25]

    Bang H, Yang H, Sun Y K, Prakash J 2005 J. Electrochem. Soc. 152 A421

    [26]

    Kumaresan K, Sikha G, White R E 2008 J. Electrochem. Soc. 155 A164

    [27]

    Zeng J B, Wu W, Jiang F M 2014 Solid State Ionics 260 76

    [28]

    He S Y, Zeng J B, Bereket T H, Jiang F M 2016 Sci. Bull. 61 656

    [29]

    Tye F L 1983 J. Power Sources 9 89

    [30]

    Tjaden B, Brett D J L, Shearing P R 2018 Int. Mater. Rev. 63 47

    [31]

    Valøen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [32]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [33]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [34]

    Miao Y K, Liu H F, Liu Q H, Li S Y 2016 Sci. Rep. 6 32639

  • [1] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [3] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [5] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] Pang Hui. An extended single particle model-based parameter identification scheme for lithium-ion cells. Acta Physica Sinica, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [7] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [8] Huang Liang, Li Jian-Yuan. Modeling and failure monitor of Li-ion battery based on single particle model and partial difference equations. Acta Physica Sinica, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [9] Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying. Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery. Acta Physica Sinica, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [10] Lu Lu, Ji Hong-Fei, Guo Ge-Pu, Guo Xia-Sheng, Tu Juan, Qiu Yuan-Yuan, Zhang Dong. Ultrasonic enhancement of the porosity of alginate scaffold. Acta Physica Sinica, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [11] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [13] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [14] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [15] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [17] Feng Ning-Bo, Gu Yan, Liu Yu-Sheng, Nie Heng-Chang, Chen Xue-Feng, Wang Gen-Shui, He Hong-Liang, Dong Xian-Lin. Porosity effects on depoling characteristics of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load. Acta Physica Sinica, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [18] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] Di Yu-Xian, Ji Xin-Hua, Hu Ming, Qin Yu-Wen, Chen Jin-Long. Residual stress measurement of porous silicon thin film by substrate curvature method. Acta Physica Sinica, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [20] Hou Zhu-Feng, Liu Hui-Ying, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. Investigation of lithium insertion in anode material CuSn for lithium-ion batteries. Acta Physica Sinica, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
Metrics
  • Abstract views:  6627
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2018
  • Accepted Date:  24 October 2018
  • Published Online:  05 January 2019

/

返回文章
返回