Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoinduced charge carrier dynamics and spectral band filling in organometal halide perovskites

Zhao Wan-Ying Ku Zhi-Liang Jin Zuan-Ming Liu Wei-Min Lin Xian Dai Ye Yan Xiao-Na Ma Guo-Hong Yao Jian-Quan

Citation:

Photoinduced charge carrier dynamics and spectral band filling in organometal halide perovskites

Zhao Wan-Ying, Ku Zhi-Liang, Jin Zuan-Ming, Liu Wei-Min, Lin Xian, Dai Ye, Yan Xiao-Na, Ma Guo-Hong, Yao Jian-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the solution-processed organic-inorganic perovskite solar cells have attracted considerable attention because of their advantages of high energy conversion efficiency, low cost, and easily processing. Organometallic halide perovskite solar cells have gradually demonstrated particular superior properties in energy field due to their excellent photoelectric properties. This has been triggered by the unprecedented increase in its overall power conversion efficiency reaching 23% in just a few years, and it is becoming a direct competitor against the existing leading technology silicon. In this paper, 5-AVA-doped organometal halide perovskite films, (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD, are prepared by the two-step method. The generation and recombination mechanism of charge carriers in two kinds of film samples are discussed in detail. The bivalent band structure of perovskite film material CH3NH3PbI3 is determined by ultraviolet-visible absorption spectra of perovskite film (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD. We investigate the photocarrier dynamics and band filling effects in these two organometal halide perovskite films by using femtosecond transient absorption spectroscopy. For (5-AVA)0.05(MA)0.95PbI3, the photoinduced bleach recovery at 760 nm reveals that band-edge recombination follows second-order kinetics, indicating that the dominant relaxation pathway is via the recombination of free electrons and holes. With regard to the perovskite film (5-AVA)0.05(MA)0.95PbI3 and (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD, the signal is photoinduced absorption from 550 nm to 700 nm. As the delay time increases, the electrons and holes are recombined, which results in a red shift of absorption spectrum in (5-AVA)0.05(MA)0.95PbI3. This can be referred to as Moss-Burstein band filling model. In contrast, the electrons and holes of (5-AVA)0.05(MA)0.95PbI3/Spiro-OMeTAD perovskite film sample are separated after photoexcitation. The holes rapidly transfer to the hole transport layer of Spiro-OMeTAD. It will lead to an increase in sample absorbance and a rapid recovery of bleaching signals. Consequently, electron-hole recombination is no longer a dominant pathway to the relaxation of photocarriers and the band filling effect is not significant in the composite film. Our findings provide a valuable insight into the understanding of the charge carrier dynamics and spectral band filling in mixed perovskites. These results conduce to the understanding of the intrinsic photo-physics of semiconducting organometal halide perovskites with direct implications for photovoltaic and optoelectronic applications, and provide a reference for the future research of perovskite solar cells.
    [1]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 4 1764

    [2]

    Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nature Photon. 9 106

    [3]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956

    [4]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [5]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeerudding S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989

    [6]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [7]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 126 1

    [8]

    Juarez-Perez E J, Wu M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680

    [9]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [10]

    Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931

    [11]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [12]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [13]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610

    [14]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421

    [15]

    Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M 2014 J. Phys. Chem. Lett. 5 1300

    [16]

    Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G 2014 Nature Commun. 5 5049

    [17]

    Manser J S, Kamat P V 2014 Nature Photon. 8 737

    [18]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E 2014 Nature Photon. 8 250

    [19]

    Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y 2015 J. Am. Chem. Soc. 137 2089

    [20]

    Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M, Ma G H 2018 Chin. Phys. Lett. 35 028401

    [21]

    Yan H J, An B L, Fan Z F, Zhu X Y, Lin X, Jin Z M, Ma G H 2016 Appl. Phys. A 122 414

    [22]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [23]

    Guo Z, Wan Y, Yang M, Jordan S, Zhu K, Huang L 2017 Science 356 6333

    [24]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 345 295

    [25]

    Ghanassi M, Schanne-Klein M C, Hache F, Ekimov A I, Ricard D, Flytzanis C 1993 Appl. Phys. Lett. 62 78

    [26]

    Burstein E 1954 Phys. Rev. 93 632

    [27]

    Moss T S 1954 Proc. Phys. Soc. B 67 775

    [28]

    Kamat P V, Dimitrijevic N M, Nozik A J 1989 J. Phys. Chem. 93 2873

    [29]

    Kawamura K, Maekawa K, Yanagi H, Hirano M, Hosono H 2003 Thin Solid Films 445 182

    [30]

    Hickey S G, Riley D J, Tull E J 2000 J. Phys. Chem. B 104 7623

    [31]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nature Mater. 13 476

    [32]

    Giorgi G, Fujisawa J, Segawa H, Yamashita K 2013 J. Phys. Chem. Lett. 4 4213

  • [1]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 4 1764

    [2]

    Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nature Photon. 9 106

    [3]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956

    [4]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [5]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeerudding S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989

    [6]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [7]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 126 1

    [8]

    Juarez-Perez E J, Wu M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680

    [9]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [10]

    Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931

    [11]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [12]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [13]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610

    [14]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421

    [15]

    Wehrenfennig C, Liu M, Snaith H J, Johnston M B, Herz L M 2014 J. Phys. Chem. Lett. 5 1300

    [16]

    Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G 2014 Nature Commun. 5 5049

    [17]

    Manser J S, Kamat P V 2014 Nature Photon. 8 737

    [18]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Gratzel M, Moser J E 2014 Nature Photon. 8 250

    [19]

    Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y 2015 J. Am. Chem. Soc. 137 2089

    [20]

    Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M, Ma G H 2018 Chin. Phys. Lett. 35 028401

    [21]

    Yan H J, An B L, Fan Z F, Zhu X Y, Lin X, Jin Z M, Ma G H 2016 Appl. Phys. A 122 414

    [22]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [23]

    Guo Z, Wan Y, Yang M, Jordan S, Zhu K, Huang L 2017 Science 356 6333

    [24]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 345 295

    [25]

    Ghanassi M, Schanne-Klein M C, Hache F, Ekimov A I, Ricard D, Flytzanis C 1993 Appl. Phys. Lett. 62 78

    [26]

    Burstein E 1954 Phys. Rev. 93 632

    [27]

    Moss T S 1954 Proc. Phys. Soc. B 67 775

    [28]

    Kamat P V, Dimitrijevic N M, Nozik A J 1989 J. Phys. Chem. 93 2873

    [29]

    Kawamura K, Maekawa K, Yanagi H, Hirano M, Hosono H 2003 Thin Solid Films 445 182

    [30]

    Hickey S G, Riley D J, Tull E J 2000 J. Phys. Chem. B 104 7623

    [31]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nature Mater. 13 476

    [32]

    Giorgi G, Fujisawa J, Segawa H, Yamashita K 2013 J. Phys. Chem. Lett. 4 4213

  • [1] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [3] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [6] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [7] Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan. Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite. Acta Physica Sinica, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [8] Liu Xiao-Min, Li Yi-Hui, Wang Xing-Tao, Zhao Yi-Xin. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. Acta Physica Sinica, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [9] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] Zhang Yu, Zhou Huan-Ping. Intrinsic stability of organic-inorganic hybrid perovskite. Acta Physica Sinica, 2019, 68(15): 158804. doi: 10.7498/aps.68.20190343
    [11] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [12] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [13] Chen Liang, Zhang Li-Wei, Chen Yong-Sheng. Progress in Pb-free and less-Pb organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [14] Guo Hong-Wei, Liu Ran, Wang Ling-Rui, Cui Jin-Xing, Song Bo, Wang Kai, Liu Bing-Bing, Zou Bo. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3. Acta Physica Sinica, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [15] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] Chen Su-Jie, Yu Jun-Sheng, Wen Wen, Jiang Ya-Dong. Influence of NPB:CBP modulated hole transporting layer on yellow organic light-emitting device characteristics. Acta Physica Sinica, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [17] Zheng Ying-Ying, Deng Hai-Tao, Wan Jing, Li Chao-Rong. Bandgap energy tuning and photoelectrical properties of self-assembly quantum well structure in organic-inorganic hybrid perovskites. Acta Physica Sinica, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [18] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Zhao Chu-Jun, Luo Xiao-Hua. Effects of organic/organic interface on recombination efficiency in double-layer organic diodes. Acta Physica Sinica, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [19] YANG HONG, ZHANG TIE-QIAO, WANG SHU-FENG, GONG QI-HUANG. ULTRAFAST SPECTROSCOPY AND APPLICATIONS BASED ON TI:SAPPHIRE FEMTOSECOND LASER. Acta Physica Sinica, 2000, 49(7): 1292-1296. doi: 10.7498/aps.49.1292
    [20] JIANG QI, TAO RUI-BAO. REAL-SPACE RENORMALIZATION STUDY OF TIGHT-BIN-DING HAMILTONIAN WITH ARBITRARY BAND FILLING. Acta Physica Sinica, 1989, 38(11): 1778-1784. doi: 10.7498/aps.38.1778
Metrics
  • Abstract views:  5903
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2018
  • Accepted Date:  11 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回