搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维有机无机杂化钙钛矿的薄膜晶体管

郭宁 周舟 倪牮 蔡宏琨 张建军 孙艳艳 李娟

引用本文:
Citation:

基于二维有机无机杂化钙钛矿的薄膜晶体管

郭宁, 周舟, 倪牮, 蔡宏琨, 张建军, 孙艳艳, 李娟

Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite

Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan
PDF
HTML
导出引用
  • 三维有机无机杂化钙钛矿因其优异的光电性能被视为光电领域极具前景的材料, 但其在湿度环境下的不稳定性成为制约产业化进程的关键因素之一. 本文采用一步溶液法成功制备了碘化铅基二维钙钛矿(PEA)2(MA)n–1PbnI3n + 1 (n = 1, 3 ,6, 20, 30), 对钙钛矿的维度及微观结构进行调控, 并将其应用作为薄膜晶体管(TFTs)器件的半导体沟道层. 实验结果表明, 独特的二维层状结构和量子约束效应有效地抑制了器件的环境不稳定性和离子迁移现象, TFTs器件性能得到提高. 基于准二维Quasi-2D (n = 6)钙钛矿的薄膜晶体管器件空穴迁移率(μhole)达到3.9 cm2/(V·s)、阈值电压为1.85 V、开关比高于104. 首次提出将准二维有机无机杂化钙钛矿材料应用到薄膜晶体管中, 为制备高性能、高稳定性的薄膜晶体管器件提供了新的思路.
    Despite the fact that three-dimensional organic-inorganic hybrid perovskite is regarded as a promising material in the field of optoelectronics and microelectronics due to its excellent photoelectric properties, however, the instability under the moisture environment and the gate-voltage screening effect associated with ionic transport are still serious, which restricts the development of perovskite devices. Here in this work, the lead iodide perovskite (PEA)2(MA)n–1PbnI3n+1 series are successfully prepared by one-step solution method, including pure-two-dimensional (pure-2D), quasi-two-dimensional (quasi-2D) and traditional three-dimensional (3D) perovskite materials. The dimension and microstructure of the perovskites are regulated, and the effects of dimensions on the performance of organic-inorganic hybrid perovskite materials are investigated firstly. The crystallization of the 2D perovskites and 3D perovskite films are observed obviously. Moreover, the surface of pure-2D perovskite film with discoid, regular and micron-sized grains is smoother than that of 3D perovskite film. And also, the unapparent grain boundary is exhibited in the quasi-2D perovskites. A uniform perovskite film with full coverage and inconspicuous grain boundaries facilitates the transmission capacity of the charge carriers in the channel layer due to the reduction of defects caused by the grain boundaries. And benefited from the high-quality films with inconspicuous grain boundary as demonstrated, the quasi-2D hybrid perovskite film exhibits a longer carrier lifetime (τns) than traditional 3D MAPbI3 perovskite film, revealing that the layered 2D structure is more favorable for carrier transport due to the fewer defects in it. In addition, under the condition of the same environment humidity, the 2D perovskite materials show better moisture stability. Then, to investigate the influences of dimensional structure on the perovskite field-effect devices, we fabricate the bottom-gate and top-contact thin film transistors (TFTs) based on the perovskite materials with different dimensions. As a result, the instability and ion migration effect for each of the devices are suppressed effectively due to the distinct 2D layer-structure and quantum confinement effect, which leads the device performance to be further improved. The device based on quasi-2D (n = 6) channel TFT achieves a hole mobility (μhole) of 3.9 cm2/(V·s), an on-off current ratio of 104 and more, and a 1.85V turn-on voltage of 1.85 V. The first application of quasi-2D organic and inorganic hybrid perovskite materials to thin film transistors provides a new idea for preparing the high-performance and stable thin film transistor devices.
      通信作者: 李娟, lj1018@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61076006, 61377031)、国家高技术研究发展计划(863计划)(批准号: 2002AA303260)和南开大学 2019 年项目基础科学研究资助的课题
      Corresponding author: Li Juan, lj1018@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61076006, 61377031), National High Technology Research and Development Program of China (863 Plan) (Grant No. 2002AA303260), and Basic Scientific Research of Nankai University in the 2019 Project
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotechnol. 9 927Google Scholar

    [4]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [5]

    Park C B, Kim K M, Lee J E, Na H I, Yoo S S, Yang M S 2014 Org. Electron. 15 3538Google Scholar

    [6]

    Takeya J, Yamagishi M, Tominari Y, Nakazawa Y 2007 Solid-State Electron. 51 1338Google Scholar

    [7]

    Robert F 2000 Science 287 415Google Scholar

    [8]

    Chiarella F, Ferro P, Licci F, et al. 2007 Appl. Phys. A: Mater. Sci. Process. A86 89Google Scholar

    [9]

    Feng L, Chun M, Hong W, Wei J H, Wei L Y, Arif D S, Tom W 2015 Nat. Commun. 6 8238Google Scholar

    [10]

    Yusoff A R B M, Kim H P, Li X, Kim J, Jang J, Nazeeruddin M K 2017 Adv. Mater. 29 1602940Google Scholar

    [11]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [12]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [13]

    Labram J G, Fabini D H, Perry E E, et al. 2015 J. Phys. Chem. Lett. 6 3565Google Scholar

    [14]

    Smith I C, Hoke E T, Solis‐Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. 53 11232Google Scholar

    [15]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [16]

    Saparov B, Mitzi D B 2016 Chem. Rev. 116 4558Google Scholar

    [17]

    Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H 2017 Angew. Chem. Int. Ed. 56 4252Google Scholar

    [18]

    Wang Y, Liu X, Li L, Ji C, Sun Z, Han S, Tao K, Luo J 2019 Chem. Asian J. 14 1530Google Scholar

    [19]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [20]

    Matsushima T, Mathevet F, Heinrich B, et al. 2016 Appl. Phys. Lett. 109 253301Google Scholar

    [21]

    Zhu H, Liu A, Luque H L, Sun H, Ji D, Noh Y Y 2019 Acs Nano. 13 3971Google Scholar

    [22]

    Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C 2019 Joule 3 794Google Scholar

    [23]

    陈皓然, 夏英东, 陈永华, 黄维 2018 材料导报 32 1Google Scholar

    Chen H R, Xia Y D, Chen Y H, Huang W 2018 Materials Reports 32 1Google Scholar

    [24]

    张琦忠 2018 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang Q 2018 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [26]

    Cheng Z, Lin J 2010 Crystengcomm 12 2646Google Scholar

    [27]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [28]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051.1

    [29]

    Peng Y, Tang L, Zhou Z, Xu J, Li J, Cai H, Ni J, Zhang J 2018 J. Phys. D: Appl. Phys. 51 445101Google Scholar

    [30]

    Soe C M M, Nagabhushana G P, Shivaramaiah R, et al. 2018 Proc. Natl. Acad. Sci. 116 58

  • 图 1  (a) 不同维度钙钛矿成膜工艺示意图; (b) 底栅顶接触钙钛矿TFTs器件结构示意图

    Fig. 1.  (a) Synthesis of perovskite film with different dimensions; (b) schematic structure of TFT based on perovskite with a typical structure of bottom-gate, top-contact TFT.

    图 2  不同维度钙钛矿结构示意图

    Fig. 2.  Schematic of perovskite structures with different dimensions

    图 3  不同维度钙钛矿薄膜扫描电子显微镜图 (a)纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿. 扫描电子显微镜图比例尺为1 μm

    Fig. 3.  SEM images of perovskite films with different dimensions (a) Pure-2D; (b) Quasi-2D (n = 3); (c) Quasi-2D (n = 6); (d) 3D. The scale bar is 1 μm for the SEM images.

    图 4  不同维度钙钛矿薄膜表面原子力显微镜图 (a) 纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿. 原子力显微镜图比例尺为5μm

    Fig. 4.  Top-surface AFM images of perovskite films with different dimensions: (a) Pure-2D; (b) quasi-2D (n = 3); (c) quasi-2D (n = 6); (d) 3D. The scale bar is 5 μm for the AFM images.

    图 5  不同维度钙钛矿薄膜的XRD图谱

    Fig. 5.  XRD patterns of perovskite films with different dimensions.

    图 6  不同维度钙钛矿薄膜 (a) 归一化稳态光致发光光谱; (b) 时间分辨光致发光光谱

    Fig. 6.  (a) Normalized PL (b) time-resolved PL spectra of perovskite films with different dimensions.

    图 7  不同维度钙钛矿薄膜的水接触角 (a) 纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿; (e) 不同维度钙钛矿在30%湿度的空气环境下暴露前后对比图

    Fig. 7.  Water contact angle of perovskite films with different dimensions: (a) Pure-2D; (b) Quasi-2D (n = 3); (c) Quasi-2D (n = 6); (d) 3D; (e) images of perovskite films with different dimensions before and after exposed to 30% humidity of the ambient environment.

    图 8  基于不同维度钙钛矿的薄膜晶体管器件转移特性曲线 (a)Ids-Vg; (b) $ I_{\rm ds}^{1/2} $-Vg 对比图

    Fig. 8.  A comparison of typical transfer characteristic curve of the TFT devices based on the perovskite with different dimensions: (a) Ids-Vg; (b) $ I_{\rm ds}^{1/2} $-Vg, respectively.

    图 9  (a) n = 20的准二维; (b) n = 30的准二维钙钛矿扫描电子显微镜图; (c) n = 20的准二维; (d) n = 30 的准二维钙钛矿原子力显微镜图. 扫描电子显微镜比例尺为500 nm; 原子力显微镜比例尺为5 μm

    Fig. 9.  SEM images of perovskite films (a) Quasi-2D (n=20); b) Quasi-2D (n=30). The scale bar is 500 nm for the SEM images and 5 μm for the AFM images.

    表 1  不同维度钙钛矿TRPL衰减曲线拟合的时间常数和振幅

    Table 1.  Time constant and amplitude of perovskites with different dimensions by fitting the TRPL decay curves.

    PEA2MAn-1PbnI3 n+1A1τ1/nsA2τ2/nsτave/ns
    n = 1
    n = 3572.018.366.9125.2101.9
    n = 6520.931.2306.2236.6198.9
    n = ∞347.66.277.1644.329.5
    下载: 导出CSV

    表 2  不同维度钙钛矿薄膜的水接触角

    Table 2.  Summary of water contact angle of perovskite films with different dimensions

    Pure-2DQuasi-2D (n = 3) Quasi-2D (n = 6) 3D
    Water contact angle/(°) 75.31 64.70 61.66 38.88
    下载: 导出CSV

    表 3  基于不同维度钙钛矿的薄膜晶体管器件的相关性能参数

    Table 3.  Summary of related performance parameters of TFT devices based on the perovskite with different dimensions.

    Perovskite
    style
    μhole/cm2·(V·s)–1Ion/IoffVth/VSS/V·dec–1
    Pure-2D7.2×10–21052.300.11
    Quasi-2D
    (n = 3)
    2.901053.100.60
    Quasi-2D
    (n = 6)
    3.901051.851.10
    Quasi-2D
    (n = 20)
    0.791050.441.25
    Quasi-2D
    (n = 30)
    0.271050.701.60
    3D0.301040.600.14
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotechnol. 9 927Google Scholar

    [4]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [5]

    Park C B, Kim K M, Lee J E, Na H I, Yoo S S, Yang M S 2014 Org. Electron. 15 3538Google Scholar

    [6]

    Takeya J, Yamagishi M, Tominari Y, Nakazawa Y 2007 Solid-State Electron. 51 1338Google Scholar

    [7]

    Robert F 2000 Science 287 415Google Scholar

    [8]

    Chiarella F, Ferro P, Licci F, et al. 2007 Appl. Phys. A: Mater. Sci. Process. A86 89Google Scholar

    [9]

    Feng L, Chun M, Hong W, Wei J H, Wei L Y, Arif D S, Tom W 2015 Nat. Commun. 6 8238Google Scholar

    [10]

    Yusoff A R B M, Kim H P, Li X, Kim J, Jang J, Nazeeruddin M K 2017 Adv. Mater. 29 1602940Google Scholar

    [11]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [12]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [13]

    Labram J G, Fabini D H, Perry E E, et al. 2015 J. Phys. Chem. Lett. 6 3565Google Scholar

    [14]

    Smith I C, Hoke E T, Solis‐Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. 53 11232Google Scholar

    [15]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [16]

    Saparov B, Mitzi D B 2016 Chem. Rev. 116 4558Google Scholar

    [17]

    Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H 2017 Angew. Chem. Int. Ed. 56 4252Google Scholar

    [18]

    Wang Y, Liu X, Li L, Ji C, Sun Z, Han S, Tao K, Luo J 2019 Chem. Asian J. 14 1530Google Scholar

    [19]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [20]

    Matsushima T, Mathevet F, Heinrich B, et al. 2016 Appl. Phys. Lett. 109 253301Google Scholar

    [21]

    Zhu H, Liu A, Luque H L, Sun H, Ji D, Noh Y Y 2019 Acs Nano. 13 3971Google Scholar

    [22]

    Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C 2019 Joule 3 794Google Scholar

    [23]

    陈皓然, 夏英东, 陈永华, 黄维 2018 材料导报 32 1Google Scholar

    Chen H R, Xia Y D, Chen Y H, Huang W 2018 Materials Reports 32 1Google Scholar

    [24]

    张琦忠 2018 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang Q 2018 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [26]

    Cheng Z, Lin J 2010 Crystengcomm 12 2646Google Scholar

    [27]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [28]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051.1

    [29]

    Peng Y, Tang L, Zhou Z, Xu J, Li J, Cai H, Ni J, Zhang J 2018 J. Phys. D: Appl. Phys. 51 445101Google Scholar

    [30]

    Soe C M M, Nagabhushana G P, Shivaramaiah R, et al. 2018 Proc. Natl. Acad. Sci. 116 58

  • [1] 赵泽贤, 徐萌, 彭聪, 张涵, 陈龙龙, 张建华, 李喜峰. 喷墨打印高迁移率铟锌锡氧化物薄膜晶体管. 物理学报, 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [4] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [5] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [8] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [11] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [13] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [14] 张耕铭, 郭立强, 赵孔胜, 颜钟惠. 氧对IZO低压无结薄膜晶体管稳定性的影响. 物理学报, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [15] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性. 物理学报, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  12017
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-06-06
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-10-05

/

返回文章
返回