搜索

x

优先出版

为提高时效性,文章一经录用即全文上网,内容未经编辑或有瑕疵,请以最终出版的版本为准。
领域
平带光子微结构中的新颖现象:从模式局域到实空间拓扑
夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚, 等
摘要 +
近年来, 凝聚态物理中平带局域与拓扑等概念与光学体系的有机结合, 使得平带光子学系统的研究迎来了极为快速的发展, 催生了一系列新颖的光物理现象与潜在的应用前景. 目前, 平带结构在光子晶体、光学超构材料以及光子晶格(倏逝波耦合的光学波导阵列)等多种人工光子微结构中得到了实现, 并在其中观察到了很多凝聚态系统中难以直接实现的物理现象. 本文简要综述光子微结构中关于平带物理的最新研究进展. 以光诱导和激光直写光子晶格系统为例, 包括Lieb, Kagome 和超级蜂窝晶格等, 特别介绍平带模式局域与实空间拓扑效应等新颖物理现象. 光子微结构为研究平带物理和拓扑效应提供了一个可调控的平台, 同时其研究结果也对探究电子、声子、等离激元、腔极化子与超冷原子等系统中相关的基本物理问题和应用具有借鉴作用.
信息超材料研究进展
崔铁军, 吴浩天, 刘硕, 等
摘要 +
超材料是物理和信息领域的研究热点之一, 本文主要介绍信息超材料的研究进展. 不同于传统超材料的等效媒质参数表征, 信息超材料由物理单元的数字编码来描述, 通过控制不同的编码序列来实时地调控电磁波, 进而实现超材料的现场可编程功能. 由于在超材料的物理空间上构筑起数字空间, 因此可在超材料的物理平台上直接处理数字信息, 实现了信息系统微波射频和数字信息处理的统一. 本文系统介绍数字编码超材料、现场可编程超材料及信息超材料的基本概念及其调控电磁波的能力. 结合其数字表征的特点, 重点介绍定量描述信息超材料信息量的信息熵、对波束进行搬移的卷积定理、以及对多个波束进行独立调控的加法定理. 最后, 展示了基于信息超材料的可编程全息成像、新架构微波成像和无线通信系统, 实现了超材料的系统级应用.
脉冲电弧等离子体激励控制超声速平板边界层转捩实验
唐冰亮, 郭善广, 宋国正, 罗彦浩, 等
摘要 +
脉冲电弧等离子体激励器具有局部加热效应强、扰动范围广等特点, 在超声速流动控制中具有广阔的应用前景. 本文运用电参数测量系统和高速纹影技术研究了脉冲电弧等离子体激励器在Ma = 3来流条件下的电特性和流场特性; 采用纳米粒子平面激光散射技术对超声速平板边界层的流动结构进行了精细测量, 并对不同等离子体激励频率下的边界层转捩特性进行了研究. 实验结果表明, 脉冲电弧放电会产生速度较高的前驱冲击波和温度较高的热沉积区, 给边界层施加连续不断的扰动. 施加扰动的脉冲电弧等离子体激励能够促进超声速平板边界层转捩. 并且脉冲放电的高频冲击效应可以促进转捩提前发生, 且频率越高, 效果越好, 当施加激励频率为60 kHz时, 转捩区长度为0, 湍流边界层厚度为25 mm. 脉冲电弧等离子体激励器可以用来促进超声速边界层转捩.
强电负性配体诱导CsPbBr3纳米晶蓝光出射
刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟, 等
摘要 +
全无机钙钛矿纳米晶因其出色的光学性能(量子产率高、发射带宽窄、吸收截面大等)与简单便利的制备过程等特点受到了各国研究人员的极大关注. 目前, 制备的无机钙钛矿纳米晶主要集中在绿光和红光波段, 蓝光无机钙钛矿纳米晶研究较少, 且存在荧光量子效率低、稳定性差的问题, 限制了其应用范围. 选用强电负性2-丙烯酰胺-2-甲基丙磺酸作为配体, 采用热注入法制备无机钙钛矿纳米晶CsPbBr3, 纳米晶呈片状, 尺寸均一, 结晶度好, 荧光峰位于462 nm, 半高宽为20 nm, 荧光量子产率可达80%. 通过测量CsPbBr3纳米晶的时间分辨光致发光谱和瞬态吸收谱, 研究了CsPbBr3纳米晶产生蓝光的物理机理. 该研究丰富了配体对于纳米晶相互作用的研究内容, 极大地促进了无机钙钛矿纳米晶在光学器件中的应用.
赝局域有效介质理论
宋彤彤, 罗杰, 赖耘, 等
摘要 +
${\overleftrightarrow \varepsilon ^{\rm{p}}}\left( \omega \right)$、局域的有效磁导率${\overleftrightarrow \mu ^{\rm{p}}}\left( \omega \right)$, 以及额外的波矢${{{k}}_a}$来描述其光学性质. 研究发现, 该赝局域有效介质兼具局域和非局域介质的性质, 在与${{{k}}_a}$垂直的晶面上表现出局域介质的光学性质, 而在与${{{k}}_a}$平行的晶面则表现出非局域介质的光学性质, 如负折射、全反射等. 进一步研究表明, 对于所有入射角的光波在穿过拥有奇数层结构单元的赝局域有效介质时, 都会出现额外的$\text{π}$相位差, 基于此设计了一种全角度相位光栅. 相对于传统的光学材料, 赝局域介质具有更加丰富有趣的光学性质, 有望在未来应用到更多的新型光学器件设计之中.">有效介质理论在利用人工微结构材料拓展光学参数方面具有重要意义. 本文对电介质光子晶体等具有非局域性质的人工微结构材料发展了一种新的赝局域有效介质理论, 通过局域的有效介电常数${\overleftrightarrow \varepsilon ^{\rm{p}}}\left( \omega \right)$、局域的有效磁导率${\overleftrightarrow \mu ^{\rm{p}}}\left( \omega \right)$, 以及额外的波矢${{{k}}_a}$来描述其光学性质. 研究发现, 该赝局域有效介质兼具局域和非局域介质的性质, 在与${{{k}}_a}$垂直的晶面上表现出局域介质的光学性质, 而在与${{{k}}_a}$平行的晶面则表现出非局域介质的光学性质, 如负折射、全反射等. 进一步研究表明, 对于所有入射角的光波在穿过拥有奇数层结构单元的赝局域有效介质时, 都会出现额外的$\text{π}$相位差, 基于此设计了一种全角度相位光栅. 相对于传统的光学材料, 赝局域介质具有更加丰富有趣的光学性质, 有望在未来应用到更多的新型光学器件设计之中.
含双曲超构材料的复合周期结构的带隙调控及应用
吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强, 等
摘要 +
等频面的拓扑结构强烈影响光在材料中的行为. 通常组成光子晶体原胞的材料都是介电材料, 其等频面都具有相同的封闭拓扑结构. 结构最为简单的光子晶体是由两种介电材料交替组成的一维光子晶体. 然而, 这种传统的光子晶体在横磁和横电偏振下的光子带隙将随着入射角的增大而向短波方向移动, 既不利于全向带隙的产生与展宽, 又使得基于光子带隙的一些应用限制在很窄的入射角度范围内. 本综述利用双曲超构材料对电磁波相位的独特调控作用, 在由具有开放的等频面的双曲超构材料和具有封闭的等频面的普通介电材料交替组成的复合周期结构中实现了随入射角零移以及红移的特殊带隙, 为研制具有新型功能的光学器件提供了新机理. 基于零移带隙, 可设计具有固定带宽的全向反射器和宽角度的近完美光吸收器. 基于红移带隙, 可设计宽角度的偏振选择器和超灵敏折射率传感器.
SeH+离子低激发态的电子结构和跃迁性质的理论研究
滑亚文, 刘以良, 万明杰, 等
摘要 +
$ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$$ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$跃迁的弗兰克-康登因子, 辐射速率和辐射寿命. 首次系统地报道了SeH+离子的光谱与跃迁性质.">采用内收敛多组态相互作用及Davidson修正方法精确地计算了SeH+离子能量最低的3个离解极限对应的12个Λ–S态的势能曲线. 计算中考虑了芯-价电子关联, 标量相对论修正和自旋-轨道耦合效应. 结果表明在30000–40000 cm–1处Ω态的曲线存在许多避免交叉, 导致a2, b0+, A12, A21, A30, A40+和c1态变为了双势阱. 通过求解径向薛定谔方程得到了12个Λ–S态和9个Ω态的光谱常数. 基于势能曲线和跃迁偶极矩, 预测出了$ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$$ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$跃迁的弗兰克-康登因子, 辐射速率和辐射寿命. 首次系统地报道了SeH+离子的光谱与跃迁性质.
介质掺杂近零媒质中光场增强效应及其应用
赵林, 冯一军, 等
摘要 +
电磁场的汇聚与增强是电磁学中一个重要的研究内容, 具备场汇聚与增强特性的电磁(光学)器件在高方向性电磁天线、激光点火、光学调控等方面有着广泛的应用前景. 目前, 电磁场增强的途径主要有两种, 一是采用构造人工电磁材料结构以实现辐射方向的控制和能量集中, 其次是采用具有高介电常数或高磁导率的材料来实现电磁场增强, 但是上述两种方式应用在光学波段具有一些局限性. 本文基于光子晶体掺杂理论, 通过介质掺杂近零媒质的方式成功实现了光场增强功能. 理论分析和数值仿真计算表明所设计的结构能够显著实现场强增强, 并适用于微波至光波波段, 应用频谱范围很宽. 作为应用探索, 本文还设计了一款工作在270 nm波长的紫外光波段点火装置. 上述工作为新型电磁(光学)器件的研制提供了新的思路.
AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射
张雪冰, 刘乃漳, 姚若河, 等
摘要 +
AlGaN/GaN界面处的二维电子气迁移率是描述高电子迁移率晶体管特性的一个重要参数, 极化光学声子散射是高温时限制二维电子气迁移率的主要散射机制. 本文对极化光学声子散射进行计算, 结果表明在二维电子气浓度为6 × 1011–1 × 1013 cm–2, 温度为200–400 K范围内, 极化光学声子散射因素决定的迁移率随温度的变化近似为μPO = ATα(α = 3.5); 由于GaN中光学声子能量较大, 吸收声子对迁移率的影响远大于发射声子的影响. 进一步讨论了极化光学声子散射因素决定的迁移率随光学声子能量变化的趋势, 表明增加极化光学声子能量可提高二维电子气的室温迁移率.
电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控
张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟, 等
摘要 +
半导体与金属接触是制作纳电子和光电子器件时非常重要的问题, 接触类型对器件的功能实现和性能影响很大. 为了制备高性能多功能化器件, 就必须对界面处的势垒高度和接触类型进行调控. 采用基于密度泛函理论的第一性原理计算研究了外电场作用下graphene/InSe范德瓦耳斯异质结的电子结构. 计算结果表明异质结中的graphene和InSe保留了各自的本征电子性质, 在界面处形成了欧姆接触. 外电场可以有效调控graphene/InSe异质结中的肖特基势垒, 不但可以调控肖特基势垒的高度, 而且可以调控界面接触类型. 外电场还可以有效调控graphene和InSe界面电荷转移的数量和方向.
大气湍流信道中聚焦涡旋光束轨道角动量串扰特性
闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱, 等
摘要 +
携带轨道角动量的涡旋光束作为传输信息的载体能有效提高信息传输效率, 然而在传输过程中受大气湍流影响轨道角动量会发生串扰. 基于螺旋谱分析理论, 推导得到了聚焦拉盖尔高斯光束在各向异性大气湍流中传输时的螺旋谱解析表达式, 并对比分析不同湍流和光束参数对聚焦与非聚焦拉盖尔高斯光束接收功率的影响, 最后利用多相位屏法进行模拟验证. 结果表明: 随着传输距离、湍流强度、拓扑荷数的增大以及湍流内尺度、光束波长的减小, 接收功率减小, 轨道角动量串扰增大; 接收孔径到达一定值时对轨道角动量串扰的影响非常小; 聚焦光束比非聚焦光束的轨道角动量串扰要小. 这些结果将对提高自由空间光通信的质量有一定意义.
改善Te基热电材料与复合电极界面性能
郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程, 等
摘要 +
Te基热电材料以其优异的热电性能得到科研工作者的广泛关注, 但该领域关于器件制备和连接界面方面的研究尚属空白. 本研究基于成分梯度、载流子浓度梯度构成的多元梯度势场对界面粒子传输过程的协同调控机制, 在热电材料Te和电极Fe之间引入β(FeTe)作为阻隔层, 设计制备了Te/β(FeTe)/Fe梯度连接结构, 并对界面新相、接触电阻和机械性能进行了研究. 研究结果表明, 中间合金层β(FeTe)与热电材料和电极材料的界面组织结构致密, 有效阻隔了界面元素间严重的交互扩散. 该β(FeTe)-Te间形成了约40 μm的反应层, β(FeTe)与Fe和Te间的接触电阻分别为4.1和7.54 μΩ·cm2, 剪切强度分别为16.11和15.63 MPa. 时效温度对梯度连接结构的服役寿命和性能影响显著, Te/β(FeTe)/Fe的界面组织在553 K温度下时效15 d, 界面性能保持稳定; 当时效温度升至573 K时, 由于高温下材料的不稳定性, 导致性能随着退火时间的延长急剧下降, 并在10 d之后完全破坏, 这表明其最佳工作温度不得高于553 K. 该梯度连接结构成功实现了抑制界面元素过度扩散、降低界面残余应力以及提升界面工作稳定性和服役寿命等目的, 其设计思路和研究结果对半导体领域器件的制备具有重要借鉴意义.
基于增强型视觉密码的光学信息隐藏系统
于韬, 杨栋宇, 马锐, 祝玉鹏, 史祎诗, 等
摘要 +
提出了一种基于增强型视觉密码的光学信息隐藏系统. 该系统可将秘密图像分解为多幅有实际意义的分享图像, 然后将这些分享图像隐藏在相位密钥中, 相位密钥可以制成衍射光学元件, 以实体的形式保存和传输, 扩展了视觉密码的应用范围. 在提取过程中, 只需要使用激光照射衍射光学元件, 再现分享图像, 然后只需要将一定数量的分享图像进行非相干叠加即可提取秘密图像, 不需要额外掌握光学和密码学的知识, 其简单性让任何人都可以使用. 仿真实验和光学实验结果表明, 该系统可应用于实际, 并且具有良好的安全性.
环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态
李吉, 刘斌, 白晶, 王寰宇, 何天琛, 等
摘要 +
研究了在环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 探索了自旋-轨道耦合作用和旋转效应对基态的影响. 结果发现, 在环形势阱下, 基态结构呈现环形分布的half-skyrmion链. 调节自旋-轨道耦合强度, 不仅可以改变体系内half-skyrmion数量, 而且能够调控half-skyrmion环形排列的对称性. 随着旋转频率增大, 体系从平面波相转化为环形对称排列的half-skyrmion链相, 最后过渡到三角格子的half-skyrmion相. 讨论了自旋相互作用和势阱形状对基态的影响. 自旋-轨道耦合强度和旋转频率作为体系的调控参数, 可用于控制不同基态相间的转化.
热注射法合成用于生物成像的核壳上转换纳米晶
刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌, 等
摘要 +
近几年来, 稀土上转换发光纳米材料凭借其生物组织穿透深度大、无组织损伤、无背景荧光干扰和成像灵敏度高等诸多优点, 在生物体荧光成像领域展现了巨大的潜在应用价值. 本文采用“一次热注射”高温溶剂热法制备不同壳层厚度的NaYF4:Yb, Tm@NaYF4上转换发光材料. 利用透射电子显微镜、粒径分析、荧光光谱等对产物进行表征, 探讨壳层厚度对纳米粒子上转换发光强度的影响. 结果表明, 在980 nm近红外光照射下, 上转换纳米材料能够发出紫外-可见光. 而且, 由于壳层包覆有效抑制了上转换发光的表面猝灭效应, 核壳结构的NaYF4:Yb, Tm@NaYF4纳米粒子发光强度比NaYF4:Yb, Tm提高了数十倍; 当壳层厚度为22.7 nm时, 上转换发光强度最强. 此外, 通过对上转换发光颗粒进行酸洗和聚乙二醇(PEG)修饰, 提高了纳米材料的生物相容性, 并成功将其应用于细胞的上转换荧光成像.
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 11
  • 12