Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain

Gao Ying-Jun Quan Si-Long Deng Qian-Qian Luo Zhi-Rong Huang Chuang-Gao Lin Kui

Citation:

Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain

Gao Ying-Jun, Quan Si-Long, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao, Lin Kui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Structural kinetics in crystalline solids is driven heterogeneously at an atomic level by localized defects, which in turn drive mesoscopic and macroscopic phenomena such as structural phase transformation, fracture, and other forms of plastic flows. A complete description of such processes therefore requires a multiscale approach. Existing modeling methods typically operate exclusively either on an atomic scale or on a mesoscopic scale and macroscopic scale. Phase-field-crystal model, on the other hand, provides a framework that combines atomic length scale and mesoacpoic/diffusive time scale, with the potential reaching a mesoacpoic length through systemic multiscale expansion method. In order to study the dislocation movement under shear strain, the free energy density functional including the exerting shear force term is constructed and also the phase field crystal model for system of shear stain is established. The climb and glide of single dislocation in two-grain system are simulated, and the glide velocity of dislocation and the Peierls potential for dislocation gliding are calculated. The results show that the energy curve changing with time are monotonically smooth under a greater shear strain rate, which corresponds to dislocation movement at a constant speed, which is of rigorous characteristic; while under less shear strain rate, the energy change curve of system presents a periodic wave feature and the dislocation movement in the style of periodic “jerky” for gliding with the stick-slip characteristic. There is a critical potential for dislocation starting movement. The Peierls potential wall for climbing movement is many times as high as that for gliding movement. The results in these simulations are in a good agreement with the experimental ones.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 51161003), the Nature Science Foundation of Guangxi Province, China (Grant No. 2012GXNSFDA053001), Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials of Guangxi, China (Grant No. GXKFJ12-01) and Education Innovation Foundation of Postgraduate of Guangxi, China (Grant No. YCSZ2014039).
    [1]

    Xu H J, Liu G X 2001 Fundamentals of Materials Science (Beijing: Beijing Industry Press) pp265-279 (in Chinese) [徐恒均, 刘国勋 2001材料科学基础 (北京: 北京工业出版社) 第265-279页]

    [2]

    Hu G X, Cai X 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) pp99-129 (in Chinese) [胡赓祥, 蔡珣 2010 材料科学基础(上海: 上海交通大学出版社) 第99-129页]

    [3]

    Bobylev S V, Ovid’ko I A 2003 Phys. Rev. B 67 132506

    [4]

    Ovidko I A, Skiba N V 2012 Scripta Mater. 67 13

    [5]

    Gukkin M Y, Ovidko I A 2001 Phys. Rev. B 63 064515

    [6]

    Gukkin M Y, Ovidko I A 2004 Acta Mater. 52 3793

    [7]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [8]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [9]

    Wang Y, Li J 2010 Acta Mater. 58 1212

    [10]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [11]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 73001

    [12]

    Gao Y J, Luo Z R, Hu X Y 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英 2010 金属学报 46 1161]

    [13]

    Luo B C, Wang H P, Wei B B 2009 Sci. Bull. 54 7 (in Chinese) [罗炳池, 王海鹏, 魏炳波 2009 科学通报 54 7]

    [14]

    Wang J C, Li J J, Yang Y J 2009 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟 2009 中国科学:E辑 38 16]

    [15]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [16]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605

    [17]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107

    [18]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E 73 31609

    [19]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [20]

    Gao Y J, Zhou W Q, Deng Q Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [21]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114

    [22]

    Yu Y M, Rainer B, Axel V 2011 J. Crystal Growth 318 18

    [23]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [24]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [25]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [26]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Comput. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [27]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [28]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [29]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605

    [30]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [31]

    Hakim V, Karma A 2009 J. Mech. Phys. Solid 57 342

    [32]

    Toth G I, Tegze G 2012 Phys. Rev. Lett. 108 025502

    [33]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [34]

    Muralidharan S, Heataja M 2010 Phys. Rev. Lett. 105 126101

    [35]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [36]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊, 张海林, 金星, 黄创高, 罗志荣 2009 金属学报 45 1190]

    [37]

    Trautt Z T, Adland A, Karma A 2012 Acta Mater. 60 6528

    [38]

    Zhang S 2013 M. S. Dissertation (Nanning: Guangxi University) (in Chinese) [张爽 2013 硕士学位论文 (南宁: 广西大学)]

    [39]

    Zhang J S 2004 Strength of Materials (Harbin: Harbin Institute Press of Technology) pp45-205 (in Chinese) [张俊善 2004 材料强度学(哈尔滨: 哈尔滨工业大学出版社) 第45-205页]

    [40]

    Romanov A E, Vladimirov V J 1992 Dislocation in Solids (Vol. 9) (Amsterdam: North-holland) pp191-402

    [41]

    Hirth J P, Lothe J 1982 Theory of Dislocation (New York: Wiley) pp82-450

    [42]

    Derek H 1975 Introduction to Dislocations (Oxford, UK: Pergamon Press) pp50-250

    [43]

    Phillips R 2001 Crystals, Defect and Microstructure. (Cambridge, UK: Cambridge University Press) pp210-420

  • [1]

    Xu H J, Liu G X 2001 Fundamentals of Materials Science (Beijing: Beijing Industry Press) pp265-279 (in Chinese) [徐恒均, 刘国勋 2001材料科学基础 (北京: 北京工业出版社) 第265-279页]

    [2]

    Hu G X, Cai X 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) pp99-129 (in Chinese) [胡赓祥, 蔡珣 2010 材料科学基础(上海: 上海交通大学出版社) 第99-129页]

    [3]

    Bobylev S V, Ovid’ko I A 2003 Phys. Rev. B 67 132506

    [4]

    Ovidko I A, Skiba N V 2012 Scripta Mater. 67 13

    [5]

    Gukkin M Y, Ovidko I A 2001 Phys. Rev. B 63 064515

    [6]

    Gukkin M Y, Ovidko I A 2004 Acta Mater. 52 3793

    [7]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 物理学报 53 2497]

    [8]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268

    [9]

    Wang Y, Li J 2010 Acta Mater. 58 1212

    [10]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [11]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 73001

    [12]

    Gao Y J, Luo Z R, Hu X Y 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英 2010 金属学报 46 1161]

    [13]

    Luo B C, Wang H P, Wei B B 2009 Sci. Bull. 54 7 (in Chinese) [罗炳池, 王海鹏, 魏炳波 2009 科学通报 54 7]

    [14]

    Wang J C, Li J J, Yang Y J 2009 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟 2009 中国科学:E辑 38 16]

    [15]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [16]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605

    [17]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107

    [18]

    Berry J, Grant M, Elder K R 2006 Phys. Rev. E 73 31609

    [19]

    Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 物理学报 59 3595]

    [20]

    Gao Y J, Zhou W Q, Deng Q Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]

    [21]

    Berry J, Elder K R, Grant M 2008 Phys. Rev. B 77 224114

    [22]

    Yu Y M, Rainer B, Axel V 2011 J. Crystal Growth 318 18

    [23]

    Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185

    [24]

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507]

    [25]

    Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]

    [26]

    Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Comput. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]

    [27]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107

    [28]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [29]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605

    [30]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [31]

    Hakim V, Karma A 2009 J. Mech. Phys. Solid 57 342

    [32]

    Toth G I, Tegze G 2012 Phys. Rev. Lett. 108 025502

    [33]

    Chan P Y, Tsekenis G, Dantzig J 2010 Phys. Rev. Lett. 105 015502

    [34]

    Muralidharan S, Heataja M 2010 Phys. Rev. Lett. 105 126101

    [35]

    Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]

    [36]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊, 张海林, 金星, 黄创高, 罗志荣 2009 金属学报 45 1190]

    [37]

    Trautt Z T, Adland A, Karma A 2012 Acta Mater. 60 6528

    [38]

    Zhang S 2013 M. S. Dissertation (Nanning: Guangxi University) (in Chinese) [张爽 2013 硕士学位论文 (南宁: 广西大学)]

    [39]

    Zhang J S 2004 Strength of Materials (Harbin: Harbin Institute Press of Technology) pp45-205 (in Chinese) [张俊善 2004 材料强度学(哈尔滨: 哈尔滨工业大学出版社) 第45-205页]

    [40]

    Romanov A E, Vladimirov V J 1992 Dislocation in Solids (Vol. 9) (Amsterdam: North-holland) pp191-402

    [41]

    Hirth J P, Lothe J 1982 Theory of Dislocation (New York: Wiley) pp82-450

    [42]

    Derek H 1975 Introduction to Dislocations (Oxford, UK: Pergamon Press) pp50-250

    [43]

    Phillips R 2001 Crystals, Defect and Microstructure. (Cambridge, UK: Cambridge University Press) pp210-420

  • [1] Xia Wen-Qiang, Zhao Yan, Liu Zhen-Zhi, Lu Xiao-Gang. Phase field crystal simulation of strain-induced square phase low-angle symmetric tilt grain boundary dislocation reaction. Acta Physica Sinica, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [2] Sun Yu-Xin, Wu De-Fan, Zhao Tong, Lan Wu, Yang De-Ren, Ma Xiang-Yang. Mechanical strength of Czochralski silicon crystal: Effects of co-doping germanium and nitrogen. Acta Physica Sinica, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [3] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [5] Guo Can, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Yao-Lin, Tang Sai. Investigation of atom-attaching process of three-dimensional body-center-cubic dendritic growth by phase-field crystal model. Acta Physica Sinica, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [6] Zhao Ze-Gang, Tian Da-Xi, Zhao Jian, Liang Xing-Bo, Ma Xiang-Yang, Yang De-Ren. Effect of prior stress-relief on the gliding of indentation dislocations on silicon wafers. Acta Physica Sinica, 2015, 64(20): 208101. doi: 10.7498/aps.64.208101
    [7] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [8] Guo Can, Wang Zhi-Jun, Wang Jin-Cheng, Guo Yao-Lin, Tang Sai. Effect of the direct correlation function on phase diagram of the two-mode phase field crystal model. Acta Physica Sinica, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [9] Xu Ling-Mao, Gao Chao, Dong Peng, Zhao Jian-Jiang, Ma Xiang-Yang, Yang De-Ren. Dislocation motion during rapid thermal processing of single-crystalline silicon wafers. Acta Physica Sinica, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [10] Guo Wei-Wei, Ren Huan, Qi Cheng-Jun, Wang Xiao-Meng, Li Xiao-Wu. Investigations on the thermal stability of fatigue dislocation structures in a single-slip-oriented copper single crystal. Acta Physica Sinica, 2012, 61(15): 156201. doi: 10.7498/aps.61.156201
    [11] Guo Yao-Lin, Wang Jin-Cheng, Wang Zhi-Jun, Tang Sai, Zhou Yao-He. Phase field crystal model for the effect of colored noise on homogenerous nucleation. Acta Physica Sinica, 2012, 61(14): 146401. doi: 10.7498/aps.61.146401
    [12] Wu Wen-Ping, Guo Ya-Fang, Wang Yue-Sheng, Xu Shuang. Evolution of interphase misfit dislocation networks in Ni-based single crystal superalloy under shear loading. Acta Physica Sinica, 2011, 60(5): 056802. doi: 10.7498/aps.60.056802
    [13] Zhang Qi, Wang Jin-Cheng, Zhang Ya-Cong, Yang Gen-Cang. Simulation of multi-grain solidification and subsequent spinodal decomposition by using phase field crystal model. Acta Physica Sinica, 2011, 60(8): 088104. doi: 10.7498/aps.60.088104
    [14] YANG SHUN-HUA, WANG CHAO-YANG. ELASTIC FIELD OF A DISLOCATION UNIFORMLY MOVING ON THE PHASE BOUNDARY. Acta Physica Sinica, 1990, 39(8): 69-77. doi: 10.7498/aps.39.69
    [15] GAO FEI, ZHANG HONG-TU. THE APPLICATION OF DISLOCATION GAUGE FIELD FOR THE DISLOCATION CORE. Acta Physica Sinica, 1989, 38(7): 1127-1133. doi: 10.7498/aps.38.1127
    [16] Ge Chuan-zhen; Zhang jing; Feng Duan. BIREFRINGENCE IMAGES OF END-ON SCREW DISLOCATIONS IN GGG CRYSTALS CONTAINING ALONG-RANGE PLANE STRAIN FIELD. Acta Physica Sinica, 1987, 36(8): 1081-1086. doi: 10.7498/aps.36.1081
    [17] GUO CHANG-LIN. DISLOCATIONS IN α-SILICON CARBIDE SINGLE CRYSTAL. Acta Physica Sinica, 1982, 31(11): 1511-1525. doi: 10.7498/aps.31.1511
    [18] OU FA. ON THE GAUGE TRANSFORMATION OF THE TENSOR POTENTIALS FOR THE FIELD OF MOVING DISLOCATIONS. Acta Physica Sinica, 1981, 30(7): 968-971. doi: 10.7498/aps.30.968
    [19] KUO KE-HSIN, CHANG HSIU-MU. MOVEMENT OF DISLOCATIONS AND CROSS-SLIP IN Al-Mg ALLOYS. Acta Physica Sinica, 1966, 22(3): 257-269. doi: 10.7498/aps.22.257
    [20] ИССЛЕДОВАВНЕ ДИСЛОКАЦИОННОГО МЕХАНИЗМА СКОЛЬЖЕНИЯ В КРИСТАЛЛАХ. Acta Physica Sinica, 1960, 16(4): 229-240. doi: 10.7498/aps.16.229
Metrics
  • Abstract views:  5655
  • PDF Downloads:  239
  • Cited By: 0
Publishing process
  • Received Date:  15 July 2014
  • Accepted Date:  24 November 2014
  • Published Online:  05 May 2015

/

返回文章
返回