Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Amplifier similariton oscillator using 10 m photonic crystal fiber

Shi Jun-Kai Chai Lu Zhao Xiao-Wei Liu Bo-Wen Hu Ming-Lie Li Yan-Feng Wang Qing-Yue

Citation:

Amplifier similariton oscillator using 10 m photonic crystal fiber

Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultrashort pulse laser with a repetition rate of below 10 MHz is suitable for a variety of micromachining applications to avoid plasma shielding effects. Besides, the parabolic pulse possesses clean wings, short pulse duration, and large peak power because only the linear chirp is accumulated during the propagation. Based on these two points, a similariton oscillator with a repetition rate of below 10 MHz is a most perfect seed source of an amplification system for micromachining. In this paper, an amplifier similariton oscillator with dispersion map based on a piece of 10 m Yb-doped large-mode-area single-polarization photonic crystal fiber is demonstrated. The semiconductor saturable absorber mirror is employed in the linear cavity as an end mirror to initiate and maintain the mode-locking operation. An adjustable slit is adopted between the end mirror and grating pair in another arm, as a central wavelength adjuster and the spectral filter to ensure the laser operational wavelength in accordance with the working wavelength of semiconductor saturable absorber mirror and the stability of mode-locking operation. The stable single-pulse mode-locking operation can be achieved by adjusting the intracavity dispersion and the operating wavelength. With the net cavity dispersion of-0.89 ps2, a spectrum with steep and smooth edges is obtained, which means that the laser does not operate in the soliton regime but in the dispersion-mapped amplifier similariton regime. A highest output power of 820 mW is obtained with a pulse duration of 6.2 ps and spectral width of 3.84 nm under a pump power of 12.8 W. The repetition rate is 8.6 MHz, corresponding to a pulse energy of 95 nJ. It is the first time that the similariton with a repetition rate of lower than 10 MHz and a highest pulse energy of 95 nJ from a similariton laser has been achieved, to the best of our knowledge. Numerical simulation results confirm that the self-similar evolution is achieved in the gain fiber, and the parabolic-and gauss-shaped pulse can be emitted at the zero-order reflection of the grating and after the slit, respectively.
      Corresponding author: Chai Lu, lu_chai@tju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327604, 2011CB808101, 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61377041, 61322502, 61377047, 61027013), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13033).
    [1]

    Fermann M E, Hartl I 2013 Nature Photon. 7 868

    [2]

    Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916

    [3]

    Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417

    [4]

    Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208

    [5]

    Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203

    [6]

    Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338

    [7]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201]

    [8]

    Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210

    [9]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010

    [10]

    Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461

    [11]

    Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647

    [12]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

    [13]

    Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307

    [14]

    Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466

    [15]

    Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531

    [16]

    Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805

    [17]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496

    [18]

    Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074

    [19]

    Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143

    [20]

    Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]

    [21]

    Kelly S M J 1992 Electron. Lett. 28 806

    [22]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45

    [23]

    Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161

  • [1]

    Fermann M E, Hartl I 2013 Nature Photon. 7 868

    [2]

    Killi A, Dörring J, Morgner U, Lederer M J, Frei J, Kopf D 2005 Opt. Express 13 061916

    [3]

    Cho S H, Bouma B E, Ippen E P, Fujimoto J G 1999 Opt. Lett. 24 06417

    [4]

    Yang J H, Guo C Y, Ruan S C, Ouyang D Q, Lin H Q, Wu Y M 2014 Chin. Phys. Lett. 31 024208

    [5]

    Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P, Xu W C 2014 Chin. Phys. B 23 064203

    [6]

    Želudevičius J, Danilevičius R, Viskontas K, Rusteika N, Regelskis K 2013 Opt. Express 21 055338

    [7]

    Yao Y H, Lu C H, Xu S W, Ding J X, Jia T Q, Zhang S A, Sun Z R 2014 Acta Phys. Sin. 63 184201(in Chinese) [姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣 2014 物理学报 63 184201]

    [8]

    Huang Z Y, Leng Y X, Dai Y 2014 Chin. Phys. B 23 124210

    [9]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 266010

    [10]

    Kruglov V I, Peacock A C, Harvey J D, Dudley J M 2002 J. Opt. Soc. Am. B 19 03461

    [11]

    Chang G, Galvanauskas A, Winful H G, Norris T B 2004 Opt. Lett. 29 222647

    [12]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

    [13]

    Oktem B,lgdr C, Ilday F Ö 2010 Nature Photon. 4 307

    [14]

    Bale B G, Wabnitz S 2010 Opt. Lett. 35 142466

    [15]

    Boscolo S, Turitsyn S K, Finot C 2012 Opt. Lett. 37 214531

    [16]

    Renninger W H, Chong A, Wise F W 2010 Phys. Rev. A 82 021805

    [17]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 2322496

    [18]

    Nie B, Pestov D, Wise F W, Dantus M 2011 Opt. Express 19 1312074

    [19]

    Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A, Wise F W 2013 Opt. Lett. 38 0143

    [20]

    Shi J K, Chai L, Zhao X W, Li J, Liu B W, Hu M L, Li Y F, Wang Q Y 2014 Chin. J. Laser 41 0202001 (in Chinese) [石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月 2014 中国激光 41 0202001]

    [21]

    Kelly S M J 1992 Electron. Lett. 28 806

    [22]

    Agrawal G P 2007 Nonlinear Fiber Optics (4th Ed.) (New York: Academic Press) pp41-45

    [23]

    Finot C, Parmigiani F, Petropoulos P, Richardson D J 2006 Opt. Express 14 083161

  • [1] Axikegu, ZHOU Xunxiu, ZHANG Yunfeng. Effects of Thunderstorms Electric Field on Cosmic Ray Secondary Photons at LHAASO. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240341
Metrics
  • Abstract views:  4534
  • PDF Downloads:  228
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2015
  • Accepted Date:  23 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回