Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Thunderstorms Electric Field on Cosmic Ray Secondary Photons at LHAASO

Axikegu ZHOU Xunxiu ZHANG Yunfeng

Citation:

Effects of Thunderstorms Electric Field on Cosmic Ray Secondary Photons at LHAASO

Axikegu, ZHOU Xunxiu, ZHANG Yunfeng
PDF
Get Citation
  • The Large High Altitude Air Shower Observatory (LHAASO) is a complex of extensive air shower (EAS) detector arrays, located at Mt. Haizi (29°21' N, 100°08' E) at an altitude of 4410 m a. s. l., Daocheng, Sichuan Province, China. Information of primary cosmic rays can be obtained by using data from secondary particles measured at LHAASO, with photons constituting the majority among these secondary particles. During thunderstorms, the atmospheric electric field can change the information of photons on the ground by affecting secondary charged particles (mainly positrons and electrons). In this paper, Monte Carlo simulations have been performed to investigate the effects of near-ground thunderstorm electric fields on cosmic ray secondary photons at LHAASO. A simple model with a vertical and uniform atmospheric electric field in a layer of atmosphere is used in our simulations. During thunderstorms, the number and energy of photons are found to significantly change and strongly depend on the electric field strength. In a field of -1000 V/cm (below the threshold of the RREA process), the number of photons occurs an increase of 23%. Also, the spectrum of photons softens, and the increased number with energy less than 2 MeV exceeds 29%. In an electric field of -1700 V/cm (above the threshold of the RREA process), the number of photons experiences exponential growth, with an increase of 279%. The spectrum of photons becomes softer compared with that at -1000 V/cm, and the increased number with energy less than 2 MeV is more than 361%. It is consistent with the theory of RREA. For these phenomena of photons at LHAASO, the main factor is that positrons/electrons increase due to the acceleration of negative electric field on electrons, with increase of 65% in -1000 V/cm and 992% in -1700 V/cm, and the spectrum of positrons/electrons becomes soften. Newborn free positrons/electrons may undergo bremsstrahlung and deposit part of their energy into photons, causing the change of number and energy of photons to follow roughly the same pattern as positrons/electrons. The simulation results can provide information for understanding the variations of the data detected by LHAASO during thunderstorms and the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.
  • [1]

    Qie X S, Yuan S F, Chen Z X, et al. 2021 Sci. China Earth Sci. 64, 10.

    [2]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X, 2013 Acta Phys. Sin. 62 219201 (in Chinese).刘冬霞, 郄秀书, 王志超, 吴学珂和潘伦湘, 2013 物理学报 62 219201.

    [3]

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202 (in Chinese). 周勋秀, 王新建, 黄代绘, 贾焕玉和吴超勇 2015 物理学报 64 149202.

    [4]

    Tsuchiya H, Enoto T, Torii T, et al. 2009 Phys. Rev. Lett. 102 255003.

    [5]

    Hariharan B, Chandra A, Dugad S R, et al. 2019, Phys. Rev. Lett. 122 105101.

    [6]

    Wilson C. T. R.1924 Proc. Phys. Soc. London 37 32D-37D.

    [7]

    Gurevich A V, Milikh G M 1992 Phys. Lett. A 165 463-468.

    [8]

    Dwyer J R 2003 Res. Lett. 30 2055.

    [9]

    Symbalisty E M D, Roussel-Dupre R A and Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575.

    [10]

    Alexeenko V V, Chernyaev A B, Chudakov A E, et a1. 1985 Proceeding of 19th International Cosmic Ray Conference.La Jolla.USA:International Union of Pure and Applied Physics 352-355.

    [11]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, et al. 2002 Phys. Lett. A 301 299-306.

    [12]

    Bartoli B, Bernardini P, Bi X J, et al. (ARGO-YBJ Collaboration) 2018 Phys. Rev. D 97 042001.

    [13]

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501-505 (in Chinses). 徐斌, 别业广和邹丹 2012 空间科学学报 32 501-505.

    [14]

    Chilingarian A, Mailyan B, Vanyan L 2012 Atmos. Res. 114-115 1.

    [15]

    Lindy N C, Benton E R, Beasley W H, et al. 2018 J. Atmos. Solar-Terr. Phys. 179 435-440.

    [16]

    Yan R R, Huang D H, Zhao B, et al. 2020 Chin. Astron. Astr. 44 146.

    [17]

    He H H and Zhang Y 2003 HEPNP 27 1106-1108 (in Chinses). 何会海和张勇 2003 高能物理与核物理 27 1106-1108.

    [18]

    Axikegu, Bartoli B, Bernardini P, et al. (ARGO-YBJ Collaboration) 2022 Phys. Rev. D 106 022008.

    [19]

    Fishman G F, Bhat P N, Mallozzi R, et al. 1994 Science 264 1313.

    [20]

    Smith D M, Lopez L I, Lin R P, et al. 2005 Science 307 1085.

    [21]

    Briggs M S, Fishman G J, Connaughton V, et al. 2010 J. Geophys. Res. 115 A07323.

    [22]

    Tavani M, Marisaldi M, Labanti C, et al. 2011 Phys. Rev. Lett. 106 018501.

    [23]

    Neubert T, Østgaard N, Reglero V, et al. 2020 Science 367 183.

    [24]

    Yoshida S, Morimoto T, Ushio T, et al. 2008 Geophys. Res. Lett. 35 L10804.

    [25]

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018 J. Geophys. Res. Atmos. 123 6864.

    [26]

    Wada Y, Enoto T, Nakazawa K, et al. 2019 Phys. Rev. Lett. 123, 061103.

    [27]

    Köhn C, Diniz G, Harakeh M N 2017 J. Geophys. Res. Atmos. 122 1365-1383.

    [28]

    McCarthy M P, Parks G K 1985 Geophys. Res. Lett. 12 393.

    [29]

    Eack K B, Beasley W H, David R W, et al. 1996 J. Geophys. Res. 101 637.

    [30]

    Chilingarian A, Daryan A, Arakelyan A K, et al. 2021 Phys. Rev. D 82 043009.

    [31]

    Torii T, Sugita T, Tanabe S, et al. 2009 Geophys. Res. Lett. 36 L13804.

    [32]

    Torii T, Takeishi M, and Hosono T 2002 J. Geophys. Res. 107 4324.

    [33]

    Tsuchiya H, Enoto T, Yamada S, et al. 2007 Phys. Rev. Lett. 99 165002.

    [34]

    Cao Z, Volpe D D, Liu S M, et al. 2022 Chin. Phys. C 46 035001.

    [35]

    Cao Z, Aharonian F, An Q, et al. 2021 Science 373 425.

    [36]

    Ma X H, Bi Y J, Chao Z, et al. 2022 Chinese Phys. C 46 035001.

    [37]

    Chen S Z, Zhan J, Liu Y, He H H, Hou C, Li X R, Zhang Z Q, Li C, Li Z, Wang L Y 2017 Nucl. Electron. Detect. Technol. 37 1101-110. (in Chinese) 陈松战,赵静,刘烨,何会海,侯超,李秀荣,张忠泉,李骢,刘佳,李哲和王玲玉. 2017核电子学与探测技术 37 1101-1105.

    [38]

    Aharonian F, An Q, Axikegu, et al. (The LHAASO Collaboration) 2021 Chinese Phys. C 45, 085002.

    [39]

    Heck D, Knapp J, Capdevielle J N, et al. 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karsrube, 6019.

    [40]

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49-55 (in Chinese). 周勋秀, 王新建, 黄代绘和贾焕玉 2016 空间科学学报 36 49-55.

    [41]

    NOAA national centers for environmental information, Magnetic Field Calculators:IGRF model 562 (1590-2024). https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm.

    [42]

    Gurevich A V, Milikh G M and Roussel-Dupre R A, 1992 Phys. Lett. A 165 463-468.

    [43]

    Marshall T C, Stolzenburg M, Maggio C R, et al. 2005 Geophys. Res. Lett. 32 L03813.

    [44]

    Chilingarian A, Hovsepyan G, Soghomonyan S, et al. 2018 Phys. Rev. D 98 082001.

    [45]

    Axi K G, Zhou X X, Huang Z C, et al. 2022 Astrophys. Space Sci. 367 30.

    [46]

    Aharonian F, An Q, Axikegu, et al. (The LHAASO Collaboration) 2023 Chinese Phys. C 47 015001.

    [47]

    Chum J, Langer R, Baše J, et al. 2020 Earth Planets Space 72 28.

    [48]

    Michimoto K J, 1993 Atmos. Electr. 13 33.

    [49]

    Dorman L I, Dorman I V, Iucci N, et al. 2003 J. Geophys. Res. 108 1181.

    [50]

    Bethe H A 1930 Annalen der Physik 5 325.

    [51]

    Buitink S, Huege T, Falcke H, et al.2010 Astropart. Phys. 33, 1.

  • [1] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, doi: 10.7498/aps.70.20210632
    [2] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, doi: 10.7498/aps.69.20200411
    [3] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, doi: 10.7498/aps.66.018201
    [4] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, doi: 10.7498/aps.64.198702
    [5] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, doi: 10.7498/aps.64.149202
    [6] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.63.106102
    [7] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, doi: 10.7498/aps.60.060702
    [8] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.60.068701
    [9] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, doi: 10.7498/aps.60.036401
    [10] Ding Xue-Cheng, Fu Guang-Sheng, Liang Wei-Hua, Chu Li-Zhi, Deng Ze-Chao, Wang Ying-Long. Influence of the initial ablated-particle density on distribution of density and velocity of ablated-particles. Acta Physica Sinica, doi: 10.7498/aps.59.3331
    [11] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ye Fan, Xu Rong-Kun. Effects of secondary neutrons on fast-neutron image quality in thick scintillator. Acta Physica Sinica, doi: 10.7498/aps.58.1316
    [12] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, doi: 10.7498/aps.58.4053
    [13] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, doi: 10.7498/aps.58.2397
    [14] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, doi: 10.7498/aps.55.3368
    [15] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, doi: 10.7498/aps.55.5803
    [16] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, doi: 10.7498/aps.55.4460
    [17] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, doi: 10.7498/aps.54.4213
    [18] Gao Guo-Liang, Qian Chang-Ji, Li Hong, Huang Xiao-Hong, Gu Wen-Jing, Ye Gao-Xiang. Computer simulation for ramified aggregates on nonlattice substrates with impurities. Acta Physica Sinica, doi: 10.7498/aps.54.2600
    [19] WU FENG-MIN, SHI JIAN-QING, WU ZI-QIN. SIMULATION OF THE INITIAL GROWTH OF METAL THIN FILMS AT HIGH TEMPERATURE. Acta Physica Sinica, doi: 10.7498/aps.50.1555
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  196
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2024

/

返回文章
返回