Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Identifying icosahedron-like clusters in metallic glasses

Guo Gu-Qing Wu Shi-Yang Cai Guang-Bo Yang Liang

Identifying icosahedron-like clusters in metallic glasses

Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the discovery of the first metallic glass (MG) with the composition of Au75Si25 in 1960, vast efforts have been devoted to understanding the mechanisms of glass formation in metals, because this class of glassy alloy usually possesses unique properties that may have the potential application as engineering material. As is well known, structure determines properties of material. Therefore, understanding the glass formation of MG from the structural perspective is helpful for guiding researchers in developing more MGs. So far, icosahedral clusters are regarded as the preferred clusters contributing to the formation of amorphous structure due to its five-fold symmetrical feature and high atomic packing. However, it has been found that an ideal icosahedron usually does not have a high concentration in many MG compositions. Thus, we wonder whether icosahedral clusters are popular in microstructures of amorphous alloys. In this work, a feasible scheme for identifying the icosahedron-like clusters in MGs is developed to address this issue. It is found that icosahedron-like clusters are popular structural units in amorphous structure indeed, contributing to the glass formation in alloy. A projection method of reflecting the styles of shell-atom connections in Voronoi-tessellation indexed clusters is developed in detail, so that all clusters can be further geometrically indexed as different projected types of polyhedra. It is revealed that there are three kinds of clusters (0, 2, 8, 1, 0, 2, 8, 2 I-type, and 0, 1, 10, 2) which have the most similar geometrical features to that of the so-called ideal icosahedron, 0, 0, 12, 0. Therefore, besides the ideal icosahedron, these three types of clusters can be regarded as the icosahedron-like clusters. The ideal icoshahedron (0, 0, 12, 0) has a coordination number (i.e., the number of shell atoms) of 12, while these three icosahedron-like clusters have coordination numbers ranging from 11 to 13, so that structural balance between the geometrical atomic stacking and the chemical interactions among various elements in MGs (especially multicomponent MGs) is more easy to achieve. Furthermore, structural models of three selected ZrCu compositions are studied, which are obtained by systematic experimental measurements combined with reverse Monte Carlo simulation. It is found that both the icosahedron-like cluster and the ideal icosahedron have the similar values of some structural parameters, in terms of high atomic packing efficiency, high cluster regularity, fruitful five-fold symmetrical feature, etc. In addition, it is revealed that these ideal icosahedra and icosahedron-like clusters can contain almost all the atoms in these structural models, enhancing the space filling efficiency. In conclusion, these identified icosahedron-like clusters should be the popular building blocks, contributing to the glass formation in alloy. This work provides an insight into the glass formation in alloy from the cluster-level structural angle and will shed light on developing more MGs.
      Corresponding author: Yang Liang, yangliang@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332112, 51471088), the Fundamental Research Funds for the Central Universities, China (Grant No. NE2015004), the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ12-08), the Funding of Jiangsu Innovation Program for Graduate Education, China (Grant No. CXLX13-152), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions are gratefully acknowledged, China.
    [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1] Gou Bing-Cong, Gu Juan, Wang Shan-Ying. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [2] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [3] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [4] Zhang Lin, Li Wei, Sun Hai-Xia, Zhang Cai-Bei, Xu Song-Ning. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [5] Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang. Computational study of structures and electronic properties of SimGen (m+n=9) clusters. Acta Physica Sinica, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [6] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Zhang Lin, Qi Yang, Zhang Zong-Ning, Zhao Qian. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [9] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [10] E Xiao-Liang, Duan Hai-Ming. Study of the structure evolution and ground state energy of ConCu55-n(n=0—55) bimetallic clusters by using the Gupta potential combined with a genetic algorithm. Acta Physica Sinica, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [11] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [12] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [13] Fang Fang, Jiang Gang, Wang Hong-Yan. Structures and properties of small bimetallic PdnPbm(n+m≤5) clusters. Acta Physica Sinica, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [14] Hao Jing-An, Zheng Hao-Ping. Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Physica Sinica, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
    [15] He Chang-Chun, Liao Ji-Hai, Yang Xiao-Bao. Monte-Carlo tree search for stable structures of planar clusters. Acta Physica Sinica, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [16] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [17] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [18] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [19] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [20] Wu Zhen-Wei, Li Mao-Zhi, Xu Li-Mei, Wang Wei-Hua. Inherited structure of amorphous matter. Acta Physica Sinica, 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
  • Citation:
Metrics
  • Abstract views:  798
  • PDF Downloads:  212
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2015
  • Accepted Date:  06 February 2016
  • Published Online:  05 May 2016

Identifying icosahedron-like clusters in metallic glasses

    Corresponding author: Yang Liang, yangliang@nuaa.edu.cn
  • 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. U1332112, 51471088), the Fundamental Research Funds for the Central Universities, China (Grant No. NE2015004), the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ12-08), the Funding of Jiangsu Innovation Program for Graduate Education, China (Grant No. CXLX13-152), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions are gratefully acknowledged, China.

Abstract: Since the discovery of the first metallic glass (MG) with the composition of Au75Si25 in 1960, vast efforts have been devoted to understanding the mechanisms of glass formation in metals, because this class of glassy alloy usually possesses unique properties that may have the potential application as engineering material. As is well known, structure determines properties of material. Therefore, understanding the glass formation of MG from the structural perspective is helpful for guiding researchers in developing more MGs. So far, icosahedral clusters are regarded as the preferred clusters contributing to the formation of amorphous structure due to its five-fold symmetrical feature and high atomic packing. However, it has been found that an ideal icosahedron usually does not have a high concentration in many MG compositions. Thus, we wonder whether icosahedral clusters are popular in microstructures of amorphous alloys. In this work, a feasible scheme for identifying the icosahedron-like clusters in MGs is developed to address this issue. It is found that icosahedron-like clusters are popular structural units in amorphous structure indeed, contributing to the glass formation in alloy. A projection method of reflecting the styles of shell-atom connections in Voronoi-tessellation indexed clusters is developed in detail, so that all clusters can be further geometrically indexed as different projected types of polyhedra. It is revealed that there are three kinds of clusters (0, 2, 8, 1, 0, 2, 8, 2 I-type, and 0, 1, 10, 2) which have the most similar geometrical features to that of the so-called ideal icosahedron, 0, 0, 12, 0. Therefore, besides the ideal icosahedron, these three types of clusters can be regarded as the icosahedron-like clusters. The ideal icoshahedron (0, 0, 12, 0) has a coordination number (i.e., the number of shell atoms) of 12, while these three icosahedron-like clusters have coordination numbers ranging from 11 to 13, so that structural balance between the geometrical atomic stacking and the chemical interactions among various elements in MGs (especially multicomponent MGs) is more easy to achieve. Furthermore, structural models of three selected ZrCu compositions are studied, which are obtained by systematic experimental measurements combined with reverse Monte Carlo simulation. It is found that both the icosahedron-like cluster and the ideal icosahedron have the similar values of some structural parameters, in terms of high atomic packing efficiency, high cluster regularity, fruitful five-fold symmetrical feature, etc. In addition, it is revealed that these ideal icosahedra and icosahedron-like clusters can contain almost all the atoms in these structural models, enhancing the space filling efficiency. In conclusion, these identified icosahedron-like clusters should be the popular building blocks, contributing to the glass formation in alloy. This work provides an insight into the glass formation in alloy from the cluster-level structural angle and will shed light on developing more MGs.

Reference (33)

Catalog

    /

    返回文章
    返回