Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory study of structure stability and electronic structures of graphyne derivatives

Chi Bao-Qian Liu Yi Xu Jing-Cheng Qin Xu-Ming Sun Chen Bai Cheng-Hao Liu Yi-Fan Zhao Xin-Luo Li Xiao-Wu

Citation:

Density functional theory study of structure stability and electronic structures of graphyne derivatives

Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the diversified atomic structures and electronic properties, two-dimensional monolayer nanocarbon materials (graphyne or graphdiyne) composed of sp and sp2 hybridization C atoms have received the widespread attention in recent years. The fundamental questions include how the sp orbital hybridization affects the electronic structure of graphyne. In order to investigate the structure dependent electronic structures of graphyne, the energetic stabilities and electronic structures of -graphyne and its derivatives (-N) with N carbon atoms on each edge of the hexagons are investigated by density functional theory (DFT) calculations in this work. In our DFT calculations we adopt generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) using the CASTEP module implemented in Materials Studio. The studied -Ns consist of hexagon carbon rings connected by vertexes whose edges have various numbers of carbon atoms N= 1-10. The structure and energy analyses show that -Ns with even-numbered carbon chains have alternating single and triple C-C bonds, energetically more stable than those with odd-numbered carbon chains possessing continuous C-C double bonds. The calculated electronic structures indicate that -Ns can be either metallic (odd N) or semiconductive (even N), depending on the parity of number of hexagon edge atoms regardless of the edge length due to Jahn-Teller distortion effect. Some semiconducting -graphyne derivatives (-N, N= 2, 6, 10) are found to possess Dirac cones (DC) with small direct band gaps 10 meV and large electron velocities 0.255106-0.414106 m/s, ~30%-50% of that of graphene. We find that Dirac cones also appear in -3 and -4 when we shorten the double bonds and elongate the triple bonds in -3 and -4 respectively. These results show that the bond length change will affect the characteristics of band structure and suggests that the band structure characteristics may be influenced by Peierls distortion in a two-dimensional system. Our DFT studies indicate that introducing sp carbon atoms into the hexagon edges of graphene opens the way to switching between metallic and semiconductor/DC electronic structures via tuning the parity of the number of hexagon edge atoms without doping and defects in nanocarbon materials and nanoelectronic devices.
      Corresponding author: Liu Yi, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn ; Li Xiao-Wu, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn
    • Funds: Project supported by Shanghai Pujiang Talent Program (Grant No. 12PJ1406500), Shanghai High-tech Area of Innovative Science and Technology, China (Grant No. 14521100602), STCSM, Key Program of Innovative Scientific Research (Grant No. 14ZZ130), State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Grant No. SKLOP201402001), National Natural Science Foundation of China (Grant Nos. 10974131, 61240054, 51202137), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416500).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
Metrics
  • Abstract views:  5596
  • PDF Downloads:  818
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2016
  • Accepted Date:  18 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回