Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influences of multiphoton excitation on near-threshold Harmonic emission in atoms

Zhang Di-Yu Li Qing-Yi Guo Fu-Ming Yang Yu-Jun

Citation:

The influences of multiphoton excitation on near-threshold Harmonic emission in atoms

Zhang Di-Yu, Li Qing-Yi, Guo Fu-Ming, Yang Yu-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When an atom or a molecule interacts with an intense laser field, a coherent high-order harmonic emission is observed at a frequency that is an integer multiple magnitude of the initial frequency of the incident laser field. The harmonic emission has the characteristic of high emission efficiency at relatively high orders, and it also has a wide expansion in the frequency domain. Thus, the high-order harmonic generation can be utilized to generate coherent EUV or soft X-ray light sources as well as ultrashort at to second laser pulses. It is promising that the attosecond laser pulse will be an important tool for detecting and controlling the electron dynamics in atom and molecule systems. The mechanisms of high-order harmonics especially the high energy part of the harmonic spectrum can be explained by the well-known three-step model. The three-step model assumes that the electron in the bound state firstly are ionized by the potential barrier formed by the laser electric field and the atomic potential, then the ionized electrons oscillate in the laser field, and finally the electron with high kinetic energy gained in the laser field has the possibility to return back to the parent ion and recombines with the ground state of the system with a high energy photon emitted. As for harmonics with low orders, especially those with single photon energy near the ionization threshold, the Coulomb potential of the atom has significant influences on them. However,the effect of the Coulomb potential of the atom are not included in the three-step model, so the mechanism of near-threshold harmonics (NTH) cannot be clearly interpreted with the three-step model alone. In this circumstance, the study of the mechanism of near-threshold harmonic emission attracted people's attention in general. One important application of NTH is that it can be utilized to generate optical comb with EUV frequencies. Theoretically, Xiong et al. studied the mechanism of below-threshold harmonic (BTH) emission and found that the mechanism of this part of harmonics include the effect of the quantum-path interference and the Coulomb potential. He et al. analyzed the emission of BTH in various laser intensity regions and found that the harmonic spectrum exhibits a periodic structure as a function of the harmonic frequency when the incident laser intensity is about 1013 W/cm2. Utilizing the quantum-path and time-frequency analyses of the harmonic emission, He et al. indicated that this periodic structure can be attributed to the interference effect between two specific quantum paths. Li et al. adopted the synchrosqueezing scheme to study the near-and below-threshold harmonic emission of Cs atoms in an intense mid-infrared laser field and they showed that the multiphoton and the multiple rescattering trajectories have an effect on the NTH and BTH generation processes. Shafir et al. found that the ionic potential plays an critical role in NTH emission. Under the interaction between the atom and the intense laser field, electron in the ground state not only can be ionized but also be pumped into excited state, and these excitation processes also affect the harmonic emission. We studied the harmonic emission process near the ionization threshold by solving the time-dependent Schrdinger equation of an atom interacting with a strong laser field. Utilizing the obtained wavefunction, we systematically studied the high-order harmonic emission with the variation of the incident laser intensity. Meanwhile, through solving the TDSE with the momentum-space method, the excited-state population is precisely calculated and achieved. We show that the ninth harmonic exhibits a periodic oscillation structure with the intensity of the incident laser field increasing, and we reveals that there is a synchronous variation between the harmonic intensity and the relatively high bound state population.Within a certain range of laser intensity, the increase of the total population of the excited states corresponds to the low efficiency of harmonic emission, and this competition relationship is quite clear. Therefore, when the wavelength of the driving laser pulse is fixed, we can optimize the driving laser intensity to achieve the near-threshold harmonic emission with high efficiency.
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11264001, 11304116, 11534004, 11627807), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).
    [1]

    Li X F, L'Huillier A, Ferry M, Lompre L A, Mainfray 1989Phys. Rev. A 39 5751

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1992Adv. At. Mol. Opt. Phys. Suppl 1 139

    [3]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004Chin. Phys. Lett. 21 652

    [4]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [5]

    Paul P M, Toma E S, Breger P 2001Science 292 1689

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012Nature 483 194

    [9]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [10]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013Phys. Rev. A 87 063418

    [11]

    Corkum P B, Krausz F 2007Nat. Phys. 3 381

    [12]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [13]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2015Nat. Commun. 6 7178

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014Phys. Rev. Lett. 112 233001

    [15]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015Phys. Rev. A 91 023428

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Haslar J, Telnov D A, Chu S I, Chang Z H 2014Nat. Photon. 8 437

    [17]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009Nat. Phys. 5 815

    [18]

    Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Maurisson J, Johnsson P, Arnold C L, L'Huillier A 2013Sci. Rep. 3 1410

    [19]

    Shafir D, Fabre B, Higuet J, Soifer H, Dagan M, Descamps D, Mevel E, Petit S, Wörner H J, Pons B, Dudovich N, Mairesse Y 2012Phys. Rev. Lett. 108 203001

    [20]

    Tian Y Y, Wang C C, Li S Y, Guo F M, Ding D J, Roeterdink W G, Chen J G, Zeng S L, Liu X S, Yang Y J 2015Chin. Phys. B 24 043202

    [21]

    Tong X M, Chu S I 1997Chem. Phys. 217 119

    [22]

    Zhou Z Y, Chu S I 2011Phys. Rev. A 83 013405

    [23]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [24]

    Wang C C, Tian Y Y, Luo S Z, Roeterdink W G, Yang Y J, Ding D J, Okunishi M, Prumper G, Shimada K, Ueda K, Zhu R H 2014Phys. Rev. A 90 023405

    [25]

    Landau R H 1983Phys. Rev. C 27 2191

    [26]

    Raekwon Y, Tabakin F 1978Phys. Rev. C 18 932

  • [1]

    Li X F, L'Huillier A, Ferry M, Lompre L A, Mainfray 1989Phys. Rev. A 39 5751

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1992Adv. At. Mol. Opt. Phys. Suppl 1 139

    [3]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004Chin. Phys. Lett. 21 652

    [4]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [5]

    Paul P M, Toma E S, Breger P 2001Science 292 1689

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012Nature 483 194

    [9]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [10]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013Phys. Rev. A 87 063418

    [11]

    Corkum P B, Krausz F 2007Nat. Phys. 3 381

    [12]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [13]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2015Nat. Commun. 6 7178

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014Phys. Rev. Lett. 112 233001

    [15]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015Phys. Rev. A 91 023428

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Haslar J, Telnov D A, Chu S I, Chang Z H 2014Nat. Photon. 8 437

    [17]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009Nat. Phys. 5 815

    [18]

    Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Maurisson J, Johnsson P, Arnold C L, L'Huillier A 2013Sci. Rep. 3 1410

    [19]

    Shafir D, Fabre B, Higuet J, Soifer H, Dagan M, Descamps D, Mevel E, Petit S, Wörner H J, Pons B, Dudovich N, Mairesse Y 2012Phys. Rev. Lett. 108 203001

    [20]

    Tian Y Y, Wang C C, Li S Y, Guo F M, Ding D J, Roeterdink W G, Chen J G, Zeng S L, Liu X S, Yang Y J 2015Chin. Phys. B 24 043202

    [21]

    Tong X M, Chu S I 1997Chem. Phys. 217 119

    [22]

    Zhou Z Y, Chu S I 2011Phys. Rev. A 83 013405

    [23]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [24]

    Wang C C, Tian Y Y, Luo S Z, Roeterdink W G, Yang Y J, Ding D J, Okunishi M, Prumper G, Shimada K, Ueda K, Zhu R H 2014Phys. Rev. A 90 023405

    [25]

    Landau R H 1983Phys. Rev. C 27 2191

    [26]

    Raekwon Y, Tabakin F 1978Phys. Rev. C 18 932

  • [1] Zhao Yan, Li Na, Dang Si-Yuan, Yang Guo-Quan, Li Chang-Yong. Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile. Acta Physica Sinica, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [2] Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun. Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse. Acta Physica Sinica, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [3] Guo Chun-Xiang, Jiao Zhi-Hong, Zhou Xiao-Xin, Li Peng-Cheng. Mechanism of laser intensity-dependent below-threshold harmonic generation. Acta Physica Sinica, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [4] Liu Yan, Guo Fu-Ming, Yang Yu-Jun. Subatomic scale study of atom-generated higher-order harmonic. Acta Physica Sinica, 2019, 68(17): 173202. doi: 10.7498/aps.68.20190790
    [5] Liang Chang-Hui,  Zhang Xiao-An,  Li Yao-Zong,  Zhao Yong-Tao,  Zhou Xian-Ming,  Wang Xing,  Mei Ce-Xiang,  Xiao Guo-Qing. Multiple ionization effect of Au induced by different ions. Acta Physica Sinica, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [6] Teng Huan, Chai Lu, Wang Qing-Yue, Hu Ming-Lie. Optimazation of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [7] Guan Zhong, Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Study of high-order harmonic generation in crystals exposed to laser fields. Acta Physica Sinica, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [8] Yu Zu-Qing, He Feng. Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption. Acta Physica Sinica, 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [9] Xia Chang-Long, Liu Xue-Shen. Generating isolated attosecond pulses at an arbitrary angle of the two-color polarized laser pulse. Acta Physica Sinica, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [10] Ge Yu-Cheng. Emission properties of high-order harmonic generation. Acta Physica Sinica, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [11] Ge Yu-Cheng. Relation of harmonic radiative energy and laser phase in high-order harmonic generation. Acta Physica Sinica, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [12] Wang Xiao-Lei, Zhang Nan, Zhao You-Bo, Li Zhi-Lei, Zhai Hong-Chen, Zhu Xiao-Nong. Determination of air ionization threshold with femtosecond laser pulses. Acta Physica Sinica, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [13] Zhao Song-Feng, Zhou Xiao-Xin, Jin Cheng. Investigation of high order harmonic generation and ionization of model hydrogen atoms and real hydrogen atom in intense laser field. Acta Physica Sinica, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [14] Li Peng-Cheng, Zhou Xiao-Xin, Dong Chen-Zhong, Zhao Song-Feng. Investigation of the high harmonic generation and ionization of atoms with long-range and short-range potentials in intense laser fields. Acta Physica Sinica, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [15] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [16] DAI YING, DING SHI-LIANG. STUDY OF MULTIPHOTON SELECTIVE EXCITATION OF DIATOMIC MOLECULES IN INTENSE LASER FIELDS BY USING THE QUADRATIC ANHARMONIC MODEL. Acta Physica Sinica, 1998, 47(6): 922-930. doi: 10.7498/aps.47.922
    [17] LU QING-ZHENG, DING CHUAN-FAN, GAO JIAN-MI, KONG FAN-AO. A ROTATIONAL ANALYSIS OF UV MULTIPHOTON IONIZATION SPECTRUM OF SiH4. Acta Physica Sinica, 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [18] LIU HOU-XIANG, LI ZHAO-LIN, LI SHU-TAO, HAN JING-CHENG, WU CUN-KAI. A STUDY OF STATE-SELECTED MULTIPHOTON IONIZATION OF FORMALDEHYDE. Acta Physica Sinica, 1988, 37(3): 470-474. doi: 10.7498/aps.37.470
    [19] ZHU RONG, HAN JING-CHENG, GUAN YI-FU, LIU HOU-XIANG, LI SHU-AIO, WU CUN-KAI. DYNAMICS OF MULTIPHOTON IONIZATION OF ACETALDEHYDE BY UV LASER. Acta Physica Sinica, 1987, 36(4): 459-466. doi: 10.7498/aps.36.459
    [20] YU WEI, XU ZHI-ZHAN. HIGHER-ORDER HARMONICS EMISSION IN CO2-LASER IRRADIATED TARGETS. Acta Physica Sinica, 1987, 36(2): 224-229. doi: 10.7498/aps.36.224
Metrics
  • Abstract views:  4669
  • PDF Downloads:  286
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2016
  • Accepted Date:  02 November 2016
  • Published Online:  05 November 2016

/

返回文章
返回