Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases

Hu Jie-Qiong Xie Ming Chen Jia-Lin Liu Man-Men Chen Yong-Tai Wang Song Wang Sai-Bei Li Ai-Kun

Citation:

First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases

Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A first-principles plane-wave pseudo potential method based on the density functional theory is used to investigate the phase structures, energies, electronic structures and elastic properties of Ti3AC2 (A=Si, Sn, Al, Ge) phases. In this paper, Ti3AC2 (A=Si, Sn, Al, Ge) crystal structures are first optimized, then the band structures, total and part density of states,charge density distributions and elastic properties of these compounds are analyzed, and the cohesive energies and formation energy of these phases are also calculated. The results show that the Ti3GeC2 is more stable than other compounds, the formation energy of Ti3AlC2 is the lowest in these compounds, which indicates that Ti3AlC2 is easier to generate; Ti3AC2 (A =Si, Sn, Al, Ge) each have a higher density of states at Fermi level, which shows the strong metallicity, meanwhile, the electrical conductivity of each phase is anisotropic. The DOS at the Fermi energy is mainly from the Ti-d electrons, which should be involved in the conduction properties although d electrons are considered to be inefficient conductors. The lowest valence bands are formed by the C-s states with a small mixture of Ti-p+d, and A-s+p states. The electrical properties are mainly decided by the p-d hybridizations between 3d electrons in Ti and the p electrons in A (A =Si, Sn, Al, Ge) and 2p electrons in C, and the strong hybridization of p-d states make the materials have stable structures. It should be noted that the calculated bond length of Ti-Ge is shorter than those of Ti-A (A=Si, Sn, Al) bonds. This implies that the Ti-Ge bond is stronger than Ti-A (A=Si, Sn, Al) bonds. Furthermore, the Fermi level of Ti3GeC2 is relatively low, which also indicates the relatively high stability of Ti3GeC2. The charge density provides a measure of the strength of the ionic bond, so that Ti3GeC2 and Ti3SiC2 have stronger ionic bonds than Ti3SnC2 and Ti3AlC2. The strong M-A bonds in Ti3GeC2 lead to a decreasing and c lattice parameter value increasing. The spherical shape of X represents more like an ionic bond. The z-directional localized shapes of A each is more like a covalent bond. The covalent bonds of A elements each are localized along the z direction so that they affect mostly the c lattice parameter; the calculated elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases show that the atomic binding force of Ti3AlC2 is weaker than those of other three phases, while the atomic binding force of Ti3GeC2 is relatively strong, which makes the strength of Ti3GeC2 quite high.
      Corresponding author: Xie Ming, joanr8210@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1302272, 51267007, 51461023), the Institutes Special Technology Development Project of Yunnan, China (Grant No. 2013DC016), and the Fund of the Collaborative Innovation Center of Rare and Precious Metals Advanced Materials, China (Grant No. 2014XT02).
    [1]

    Liu Y, Zhang J B, Li Y, Xiao X P, Chen H M 2015Mater.Rev. 29 517(in Chinese)[刘耀, 张建波, 李勇, 肖翔鹏, 陈辉明2015材料导报29 517]

    [2]

    Sezgin A, Aynur T, Yasemin O C 2016Solid State Sci. 53 44

    [3]

    Sitaram A, Ridwan S, Li Z O, Wai Y C 2015J.Eur.Ceram.Soc. 35 3219

    [4]

    Jiao Z Y, Ma S H, Wang T X 2015Solid State Sci. 39 97

    [5]

    Marcus H, Rolf G, Anneka V, Henry R, Peter S 2014Surf.Coat.Technol. 257 286

    [6]

    Navid A, Mina S H, Hamid R B, Naser E 2016Int.J.Refract.Met.Hard Mater. 61 67

    [7]

    Jeitschko W, Nowotny H, Die K Y 1967Monatsh.Chem. 98 329

    [8]

    Pietzka M A, Schuster J C 1994J.Phase Equilibria 15 392

    [9]

    Barsoum M W 2000Prog.Solid State Chem. 28 201

    [10]

    Benoit C, Ellen H, Nikhil K, Dominique V, Sylvain D 2005Powder Technol. 157 92

    [11]

    Payne M C, Clarke L J 1992Comput.Phys.Commun. 72 14

    [12]

    Segall M D, Lindan P J D, Probert M J 2002J.Phys.Condens.Matter 14 2717

    [13]

    Medvedeva N I, Freeman A J 2008Scr.Mater. 58 671

    [14]

    Yue L B, Xiao D H, Yue S, Chun C Z, Ming W L, Li P S 2010Solid State Sci. 12 1220

    [15]

    Jing R X, Chen X W, Teng F Y, Shu Y K, Jian M X, Yu G Y 2013Nucl.Instrum.Methods Phys.Res.Sect.B 304 27

    [16]

    Shou X C, Wen X F, Hai Q H, Gui Q Z, Zeng T L, Zi Z G 2011J.Solid State Chem. 184 786

    [17]

    Stojkovi M, Koteski V, Belovevi C, Čavor J 2008Phys.Rev.B 77 193

    [18]

    Xiao J K, Hua K, Chun B Z, Peter R 2015Chem.Phys. 446 1

    [19]

    Zhang H Z, Wang S Q 2007Acta Mater. 55 4645

    [20]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010Solid State Sci. 12 1220

    [21]

    Sin'ko G V, Smirnov N A 2002J.Phys.Condens.Matter 14 6989

    [22]

    Neumann G S, Stixrude L 1999Phys.Rev.B 60 791

    [23]

    Xiao M Y, Hua H, Yu H Z, Ling Y, Pei D H 2014Comput.Mater.Sci. 84 374

    [24]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S, Yang X J 2012Intermetallics 31 257

    [25]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013Physica B 427 85

    [26]

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013Acta Phys.Sin. 62 116201(in Chinese)[范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛2013物理学报62 116201]

  • [1]

    Liu Y, Zhang J B, Li Y, Xiao X P, Chen H M 2015Mater.Rev. 29 517(in Chinese)[刘耀, 张建波, 李勇, 肖翔鹏, 陈辉明2015材料导报29 517]

    [2]

    Sezgin A, Aynur T, Yasemin O C 2016Solid State Sci. 53 44

    [3]

    Sitaram A, Ridwan S, Li Z O, Wai Y C 2015J.Eur.Ceram.Soc. 35 3219

    [4]

    Jiao Z Y, Ma S H, Wang T X 2015Solid State Sci. 39 97

    [5]

    Marcus H, Rolf G, Anneka V, Henry R, Peter S 2014Surf.Coat.Technol. 257 286

    [6]

    Navid A, Mina S H, Hamid R B, Naser E 2016Int.J.Refract.Met.Hard Mater. 61 67

    [7]

    Jeitschko W, Nowotny H, Die K Y 1967Monatsh.Chem. 98 329

    [8]

    Pietzka M A, Schuster J C 1994J.Phase Equilibria 15 392

    [9]

    Barsoum M W 2000Prog.Solid State Chem. 28 201

    [10]

    Benoit C, Ellen H, Nikhil K, Dominique V, Sylvain D 2005Powder Technol. 157 92

    [11]

    Payne M C, Clarke L J 1992Comput.Phys.Commun. 72 14

    [12]

    Segall M D, Lindan P J D, Probert M J 2002J.Phys.Condens.Matter 14 2717

    [13]

    Medvedeva N I, Freeman A J 2008Scr.Mater. 58 671

    [14]

    Yue L B, Xiao D H, Yue S, Chun C Z, Ming W L, Li P S 2010Solid State Sci. 12 1220

    [15]

    Jing R X, Chen X W, Teng F Y, Shu Y K, Jian M X, Yu G Y 2013Nucl.Instrum.Methods Phys.Res.Sect.B 304 27

    [16]

    Shou X C, Wen X F, Hai Q H, Gui Q Z, Zeng T L, Zi Z G 2011J.Solid State Chem. 184 786

    [17]

    Stojkovi M, Koteski V, Belovevi C, Čavor J 2008Phys.Rev.B 77 193

    [18]

    Xiao J K, Hua K, Chun B Z, Peter R 2015Chem.Phys. 446 1

    [19]

    Zhang H Z, Wang S Q 2007Acta Mater. 55 4645

    [20]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010Solid State Sci. 12 1220

    [21]

    Sin'ko G V, Smirnov N A 2002J.Phys.Condens.Matter 14 6989

    [22]

    Neumann G S, Stixrude L 1999Phys.Rev.B 60 791

    [23]

    Xiao M Y, Hua H, Yu H Z, Ling Y, Pei D H 2014Comput.Mater.Sci. 84 374

    [24]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S, Yang X J 2012Intermetallics 31 257

    [25]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013Physica B 427 85

    [26]

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013Acta Phys.Sin. 62 116201(in Chinese)[范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛2013物理学报62 116201]

  • [1] Chen Jin-Feng, Zhu Lin-Fan. Electron collision cross section data in plasma etching modeling. Acta Physica Sinica, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [2] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
Metrics
  • Abstract views:  5638
  • PDF Downloads:  440
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2016
  • Accepted Date:  01 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回