Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal transport and microscopic dynamics in filled skutterudite YbFe4Sb12 studied by ab initio molecular dynamics simulation

Wang Yan-Cheng Qiu Wu-Jie Yang Hong-Liang Xi Li-Li Yang Jiong Zhang Wen-Qing

Thermal transport and microscopic dynamics in filled skutterudite YbFe4Sb12 studied by ab initio molecular dynamics simulation

Wang Yan-Cheng, Qiu Wu-Jie, Yang Hong-Liang, Xi Li-Li, Yang Jiong, Zhang Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Filled skutterudite is a typical thermoelectric material with high thermoelectric figure of merit at intermediate temperatures. One of the important features is the low lattice thermal conductivity (L) caused by the low frequency vibrations of filler atoms in the oversized void cages. In the past decades, it has been still under debate whether the underlying phonon scattering mechanism should be considered to be resonant scattering or enhanced three-phonon process. To clarify the role played by the filler atoms in reducing the lattice thermal conductivity, we study the microscopic dynamical process of filler and related interactions by means of ab initio molecular dynamics (AIMD) and temperature dependent effective potential (TDEP) technique. Firstly, we simulate the dynamical trajectories of fully filled skutterudite YbFe4Sb12 at different temperatures through AIMD. In this approach, the nonlinear guest-host interactions at finite temperatures are taken into consideration naturally from dynamical trajectories. Then, we extract the effective temperature-dependent harmonic and anharmonic interatomic force constants (IFCs) by TDEP method through the statistical analyses of both trajectories and forces. The atomic participation ratios and lifetimes of phonon modes are calculated based on the effective IFCs. The results demonstrate that the local vibration modes of Yb couple with acoustic branches and reduce the lifetimes of the lattice phonons significantly. However, the calculated L, which is on the assumption that the filler interacts with lattice phonons through three-phonon collision, still deviates from the experimental result. In order to rationalize the discrepancy, we analyze the correlation properties between different Yb atoms by velocity coherence in atomic dynamical motions. The localized and independent vibration characteristic of Yb is found in this analysis. This implies that the motions of Yb atoms deviate from the periodic and collective vibration excitation paradigm of phonon. Therefore, the mechanism for how filler atoms scatter lattice phonon and enhance thermal resistance is beyond three-phonon scattering process. We thus introduce resonant scattering into the lifetimes of Yb-dominant localized vibration modes, and so-calculated L is in a good agreement with the experimental data. Overall, we come to a conclusion that both the phonon-phonon interaction and the resonant scattering due to the localized oscillators cause the low lattice thermal conductivity of YbFe4Sb12.
      Corresponding author: Zhang Wen-Qing, wqzhang@t.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51632005, 51572167, 11574333).
    [1]

    Shi X, Xi L L, Yang J, Zhang W Q, Chen L D 2011 Physics. 40 710(in Chinese) [史迅, 席丽丽, 杨炯, 张文清, 陈立东 2011 物理 40 710]

    [2]

    Nolas G S, Morelli D T, Tritt T M 1999 Annu. Rev. Mater. Sci. 29 89

    [3]

    Shi X, Bai S, Xi L, Yang J, Zhang W, Chen L, Yang J 2011 J. Mater. Res. 26 1745

    [4]

    Rull-Bravo M, Moure A, Fernndez J F, Martn-Gonzlez M 2015 RSC Adv. 5 41653

    [5]

    Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, Chen L 2011 J. Am. Chem. Soc. 133 7837

    [6]

    Rogl G, Aabdin Z, Schafler E, Horky J, Setman D, Zehetbauer M, Kriegisch M, Eibl O, Grytsiv A, Bauer E 2012 J. Alloys Compd. 537 183

    [7]

    Xi L L, Yang J, Shi X, Zhang W Q, Chen L D, Yang J H 2011 Sci. China: Phys. Mech. Astron.. 41 706(in Chinese) [席丽丽, 杨炯, 史迅, 张文清, 陈立东, 杨继辉 2011 中国科学: 物理学 力学 天文学 41 706]

    [8]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [9]

    Nolas G, Cohn J, Slack G 1998 Phys. Rev.. 58 164

    [10]

    Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin.. 58 306(in Chinese) [黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉 2009 物理学报 58 306]

    [11]

    Keppens V, Mandrus D, Sales B C, Chakoumakos B C, Dai P, Coldea R, Maple M B, Gajewski D A, Freeman E J, Bennington S 1998 Nature 395 876

    [12]

    Hermann R P, Jin R, Schweika W, Grandjean F, Mandrus D, Sales B C, Long G J 2003 Phys. Rev. Lett. 90 135505

    [13]

    Dimitrov I K, Manley M E, Shapiro S M, Yang J, Zhang W, Chen L D, Jie Q, Ehlers G, Podlesnyak A, Camacho J, Li Q 2010 Phys. Rev.. 82 174301

    [14]

    Feldman J L, Singh D J, Mazin I I, Mandrus D, Sales B C 2000 Phys. Rev.. 61 R9209

    [15]

    Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805

    [16]

    Li W, Mingo N 2015 Phys. Rev.. 91 144304

    [17]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. USA 111 15031

    [18]

    Qiu W, Ke X, Xi L, Wu L, Yang J, Zhang W 2016 Sci. China: Phys. Mech. Astron. 59 627001

    [19]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922

    [20]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev.. 78 134106

    [21]

    Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747

    [22]

    Hellman O, Steneteg P, Abrikosov I A, Simak S I 2013 Phys. Rev.. 87 104111

    [23]

    Hellman O, Abrikosov I A 2013 Phys. Rev.. 88 144301

    [24]

    Srivastava G P 1990 The Physics of Phonons (Boca Raton: CRC press) p88

    [25]

    Hellman O, Broido D A 2014 Phys. Rev.. 90 134309

    [26]

    Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501

    [27]

    Slack G A, Galginaitis S 1964 Phys. Rev. 133 A253

    [28]

    Chen L D, Kawahara T, Tang X F, Goto T, Hirai T, Dyck J S, Chen W, Uher C 2001 J. Appl. Phys. 90 1864

    [29]

    Nolas G S, Fowler G, Yang J 2006 J. Appl. Phys. 100 043705

    [30]

    Guo R, Wang X, Huang B 2015 Sci. Rep. 5 7806

    [31]

    Hafner J, Krajci M 1993 J. Phys.: Condens. Matter 5 2489

    [32]

    Pailhes S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S, de Boissieu M 2014 Phys. Rev. Lett. 113 025506

    [33]

    Euchner H, Pailhs S, Nguyen L T K, Assmus W, Ritter F, Haghighirad A, Grin Y, Paschen S, de Boissieu M 2012 Phys. Rev.. 86 224303

    [34]

    Zhao X Y, Shi X, Chen L D, Zhang W Q, Bai S Q, Pei Y Z, Li X Y, Goto T 2006 Appl. Phys. Lett. 89 092121

    [35]

    Cowley R A 1968 Rep. Prog. Phys. 31 123

    [36]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811

    [37]

    Pohl R 1962 Phys. Rev. Lett. 8 481

    [38]

    Qiu P F, Yang J, Liu R H, Shi X, Huang X Y, Snyder G J, Zhang W, Chen L D 2011 J. Appl. Phys. 109 063713

  • [1]

    Shi X, Xi L L, Yang J, Zhang W Q, Chen L D 2011 Physics. 40 710(in Chinese) [史迅, 席丽丽, 杨炯, 张文清, 陈立东 2011 物理 40 710]

    [2]

    Nolas G S, Morelli D T, Tritt T M 1999 Annu. Rev. Mater. Sci. 29 89

    [3]

    Shi X, Bai S, Xi L, Yang J, Zhang W, Chen L, Yang J 2011 J. Mater. Res. 26 1745

    [4]

    Rull-Bravo M, Moure A, Fernndez J F, Martn-Gonzlez M 2015 RSC Adv. 5 41653

    [5]

    Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, Chen L 2011 J. Am. Chem. Soc. 133 7837

    [6]

    Rogl G, Aabdin Z, Schafler E, Horky J, Setman D, Zehetbauer M, Kriegisch M, Eibl O, Grytsiv A, Bauer E 2012 J. Alloys Compd. 537 183

    [7]

    Xi L L, Yang J, Shi X, Zhang W Q, Chen L D, Yang J H 2011 Sci. China: Phys. Mech. Astron.. 41 706(in Chinese) [席丽丽, 杨炯, 史迅, 张文清, 陈立东, 杨继辉 2011 中国科学: 物理学 力学 天文学 41 706]

    [8]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [9]

    Nolas G, Cohn J, Slack G 1998 Phys. Rev.. 58 164

    [10]

    Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin.. 58 306(in Chinese) [黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉 2009 物理学报 58 306]

    [11]

    Keppens V, Mandrus D, Sales B C, Chakoumakos B C, Dai P, Coldea R, Maple M B, Gajewski D A, Freeman E J, Bennington S 1998 Nature 395 876

    [12]

    Hermann R P, Jin R, Schweika W, Grandjean F, Mandrus D, Sales B C, Long G J 2003 Phys. Rev. Lett. 90 135505

    [13]

    Dimitrov I K, Manley M E, Shapiro S M, Yang J, Zhang W, Chen L D, Jie Q, Ehlers G, Podlesnyak A, Camacho J, Li Q 2010 Phys. Rev.. 82 174301

    [14]

    Feldman J L, Singh D J, Mazin I I, Mandrus D, Sales B C 2000 Phys. Rev.. 61 R9209

    [15]

    Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805

    [16]

    Li W, Mingo N 2015 Phys. Rev.. 91 144304

    [17]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. USA 111 15031

    [18]

    Qiu W, Ke X, Xi L, Wu L, Yang J, Zhang W 2016 Sci. China: Phys. Mech. Astron. 59 627001

    [19]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922

    [20]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev.. 78 134106

    [21]

    Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747

    [22]

    Hellman O, Steneteg P, Abrikosov I A, Simak S I 2013 Phys. Rev.. 87 104111

    [23]

    Hellman O, Abrikosov I A 2013 Phys. Rev.. 88 144301

    [24]

    Srivastava G P 1990 The Physics of Phonons (Boca Raton: CRC press) p88

    [25]

    Hellman O, Broido D A 2014 Phys. Rev.. 90 134309

    [26]

    Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501

    [27]

    Slack G A, Galginaitis S 1964 Phys. Rev. 133 A253

    [28]

    Chen L D, Kawahara T, Tang X F, Goto T, Hirai T, Dyck J S, Chen W, Uher C 2001 J. Appl. Phys. 90 1864

    [29]

    Nolas G S, Fowler G, Yang J 2006 J. Appl. Phys. 100 043705

    [30]

    Guo R, Wang X, Huang B 2015 Sci. Rep. 5 7806

    [31]

    Hafner J, Krajci M 1993 J. Phys.: Condens. Matter 5 2489

    [32]

    Pailhes S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S, de Boissieu M 2014 Phys. Rev. Lett. 113 025506

    [33]

    Euchner H, Pailhs S, Nguyen L T K, Assmus W, Ritter F, Haghighirad A, Grin Y, Paschen S, de Boissieu M 2012 Phys. Rev.. 86 224303

    [34]

    Zhao X Y, Shi X, Chen L D, Zhang W Q, Bai S Q, Pei Y Z, Li X Y, Goto T 2006 Appl. Phys. Lett. 89 092121

    [35]

    Cowley R A 1968 Rep. Prog. Phys. 31 123

    [36]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811

    [37]

    Pohl R 1962 Phys. Rev. Lett. 8 481

    [38]

    Qiu P F, Yang J, Liu R H, Shi X, Huang X Y, Snyder G J, Zhang W, Chen L D 2011 J. Appl. Phys. 109 063713

  • [1] Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature. Acta Physica Sinica, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [2] Su Jie, Wang Ji-Suo, Liang Bao-Long, Zhang Xiao-Yan. The energy and thermal effects of mesoscopic capacitance coupling LC circuit at finite temperature. Acta Physica Sinica, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [3] Zhang Tian-Bao, Yu Xuan-Ping, Chen A-Hai. Thermodynamic properties of one-dimensional Gaudin-Yang model at finite temperature. Acta Physica Sinica, 2015, 64(15): 156402. doi: 10.7498/aps.64.156402
    [4] Deng Qiang, Yan Jun. A two-dimensional dark energy star model at finite temperature. Acta Physica Sinica, 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [5] Cheng Tai-Min. Phonon damping in two-dimensional Heisenberg ferromagnetic system at finite temperature. Acta Physica Sinica, 2007, 56(2): 1066-1074. doi: 10.7498/aps.56.1066
    [6] Chen He-Sheng. Phase transition of lattice quantum chromodynamics with 2+1 flavor fermions at finite temperature and finite density. Acta Physica Sinica, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [7] Xianyu Ze, Cheng Tai-Min. Transverse acoustic phonon excitation of two-dimensional Heisenberg ferromagnetic system. Acta Physica Sinica, 2006, 55(9): 4828-4836. doi: 10.7498/aps.55.4828
    [8] WU HE-YU, DAI GUANG-XI. COMPARISON FOR THREE MODELS OF TERNARY FIS- SION AT FINITE TEMPERATURE. Acta Physica Sinica, 1994, 43(4): 540-546. doi: 10.7498/aps.43.540
    [9] Pan An, Fan Jun, Zhuo Lin-Kai. Acoustic scattering from a finite periodically bulkheads in cylindrical shell. Acta Physica Sinica, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [10] Li Lin, Luo Hong-Chao, Cheng Tai-Min. Effect of optical phonon-magnon interaction on the magnon life-time at finite temperature. Acta Physica Sinica, 2008, 57(10): 6531-6539. doi: 10.7498/aps.57.6531
    [11] Fan Yu-Zhe, Li Hai-Sen, Xu Chao, Chen Bao-Wei, Du Wei-Dong. Spatial correlation of underwater bubble clouds based on acoustic scattering. Acta Physica Sinica, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [12] Wang Qi-Guang, Xiong Kai-Guo, Gong Zhi-Qiang, Zhi Rong. Influence of time delay on global temperature correlation. Acta Physica Sinica, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [13] Jia Shu-Fang, Liang Jiu-Qing. Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition. Acta Physica Sinica, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [14] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [15] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [16] Fu Zhi-Qiang, Lin Shu-Yu, Chen Shi, Xian Xiao-Jun, Zhang Xiao-Li, Wang Yong. Investigation of one-dimensional finite phononic crystal with exponential section. Acta Physica Sinica, 2012, 61(19): 194301. doi: 10.7498/aps.61.194301
    [17] SHI HANG, CAI JIAN-HUA. POLARITIONS IN FINITE SUPERLATTICES. Acta Physica Sinica, 1988, 37(4): 683-687. doi: 10.7498/aps.37.683
    [18] Zhao Xu, Zhao Xing-Dong, Jing Hui. Simulating dnamical Casimir effect at finite temperature with magnons in spin chain within an optical lattice. Acta Physica Sinica, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [19] Wang Gang, Wen Ji-Hong, Han Xiao-Yun, Zhao Hong-Gang. Finite difference time domain method for the study of band gap in two-dimensiona l phononic crystals. Acta Physica Sinica, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [20] Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Zou Bing-Suo, Chen Ke-Qiu, Wang Xin-Jun. Influence of ternary mixed crystal defect layer on the localized interface optical-phonon modes in a finite superlattice. Acta Physica Sinica, 2007, 56(1): 429-436. doi: 10.7498/aps.56.429
  • Citation:
Metrics
  • Abstract views:  754
  • PDF Downloads:  350
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2017
  • Accepted Date:  27 September 2017
  • Published Online:  05 January 2018

Thermal transport and microscopic dynamics in filled skutterudite YbFe4Sb12 studied by ab initio molecular dynamics simulation

    Corresponding author: Zhang Wen-Qing, wqzhang@t.shu.edu.cn
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
  • 2. University of Chinese Academy of Science, 19 Yuquan Road, Beijing 100049, China;
  • 3. Materials Genome Institute, Shanghai University, Shanghai 200444, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51632005, 51572167, 11574333).

Abstract: Filled skutterudite is a typical thermoelectric material with high thermoelectric figure of merit at intermediate temperatures. One of the important features is the low lattice thermal conductivity (L) caused by the low frequency vibrations of filler atoms in the oversized void cages. In the past decades, it has been still under debate whether the underlying phonon scattering mechanism should be considered to be resonant scattering or enhanced three-phonon process. To clarify the role played by the filler atoms in reducing the lattice thermal conductivity, we study the microscopic dynamical process of filler and related interactions by means of ab initio molecular dynamics (AIMD) and temperature dependent effective potential (TDEP) technique. Firstly, we simulate the dynamical trajectories of fully filled skutterudite YbFe4Sb12 at different temperatures through AIMD. In this approach, the nonlinear guest-host interactions at finite temperatures are taken into consideration naturally from dynamical trajectories. Then, we extract the effective temperature-dependent harmonic and anharmonic interatomic force constants (IFCs) by TDEP method through the statistical analyses of both trajectories and forces. The atomic participation ratios and lifetimes of phonon modes are calculated based on the effective IFCs. The results demonstrate that the local vibration modes of Yb couple with acoustic branches and reduce the lifetimes of the lattice phonons significantly. However, the calculated L, which is on the assumption that the filler interacts with lattice phonons through three-phonon collision, still deviates from the experimental result. In order to rationalize the discrepancy, we analyze the correlation properties between different Yb atoms by velocity coherence in atomic dynamical motions. The localized and independent vibration characteristic of Yb is found in this analysis. This implies that the motions of Yb atoms deviate from the periodic and collective vibration excitation paradigm of phonon. Therefore, the mechanism for how filler atoms scatter lattice phonon and enhance thermal resistance is beyond three-phonon scattering process. We thus introduce resonant scattering into the lifetimes of Yb-dominant localized vibration modes, and so-calculated L is in a good agreement with the experimental data. Overall, we come to a conclusion that both the phonon-phonon interaction and the resonant scattering due to the localized oscillators cause the low lattice thermal conductivity of YbFe4Sb12.

Reference (38)

Catalog

    /

    返回文章
    返回